As described in my previous blog post (Nutrition, Gut Microbiota and Behavior, 4th of April), I will investigate the association between nutrition, gut microbiota and behavior. One of the main focuses within my research is to investigate the association between early life nutrition, gut microbiota development and inhibitory control within toddlers and pubertal children.

The first 1000 days of life (starting from conception) were shown to be a critical window for child development. In this phase, nutritional intake of the infant can stimulate the body and brain towards a healthy development, also known as nutritional programming1. Hence, early life nutrition, i.e. breastfeeding, can exert a major influence on infant development and thus future behavior. Breast milk contains many beneficial components such as sugars, immune factors and bacteria which are difficult to process in bottle formulas. Thus, exclusive breastfeeding is recommended until six months of age in the Netherlands.breastfeeding and early nutrition

Several studies have looked at the association between infant breastfeeding duration and future executive functioning. (Executive functions are cognitive processes in the brain that contribute to regulating thoughts and behaviors. Executive functions can be roughly divided into three core functions, namely: inhibitory control, working memory, and cognitive flexibility. Inhibitory control, which can be interpreted as the opposite of impulsivity, is necessary to suppress impulses.) Two studies found positive associations with breastfeeding duration and executive functioning in childhood2,3. However, some studies have found no associations between infant breastfeeding and future executive functioning 4,5. These studies have examined general executive functioning and mainly focussed on attention, and not inhibitory control. Furthermore, different ages and populations were examined which makes it difficult to draw firm conclusions about the association between breastfeeding duration and future executive functioning. Thus, it is of particular interest whether inhibitory control is association with breastfeeding duration.

In addition, previous literature has focused mostly on duration of breastfeeding, while the composition of breast milk is also of major importance. Breastmilk contains many nutrients that are finely attuned to the needs of the infant. It contains biologically active compounds which have diverse roles, among others guiding the development of the infant’s intestinal microbiota6. Breast milk also contains specific sugars, also known as human oligosaccharides, which have been shown to influence the types of microbiota colonizing in the infant gut7. This may potentially be associated with impulsive behaviour8. Thus, in addition to examining breastfeeding duration in relation to inhibitory control, I will also examine the breastmilk composition in relation to inhibitory control.

  1. Agosti, M., Tandoi, F., Morlacchi, L. & Bossi, A. Nutritional and metabolic programming during the first thousand days of life. La Pediatr. Medica e Chir. 39, (2017).
  2. Hayatbakhsh, M. R., O’Callaghan, M. J., Bor, W., Williams, G. M. & Najman, J. M. Association of Breastfeeding and Adolescents’ Psychopathology: A Large Prospective Study. Breastfeed. Med. 7, 480–486 (2012).
  3. Julvez, J. et al. Attention behaviour and hyperactivity at age 4 and duration of breast-feeding. Acta Paediatr. 96, 842–847 (2007).
  4. Belfort, M. B. et al. Infant Breastfeeding Duration and Mid-Childhood Executive Function, Behavior, and Social-Emotional Development. J. Dev. Behav. Pediatr. 37, 43–52 (2016).
  5. Groen-Blokhuis, M. M. et al. A prospective study of the effects of breastfeeding and FADS2 polymorphisms on cognition and hyperactivity/attention problems. Am. J. Med. Genet. Part B Neuropsychiatr. Genet. 162, 457–465 (2013).
  6. Andreas, N. J., Kampmann, B. & Mehring Le-Doare, K. Human breast milk: A review on its composition and bioactivity. Early Hum. Dev. 91, 629–635 (2015).
  7. Lewis, Z. T. et al. Maternal fucosyltransferase 2 status affects the gut bifidobacterial communities of breastfed infants. Microbiome 3, 13 (2015).

 

 

How many total food-and beverage-related decisions do you make in one day? Have a guess!

You reckon more than 15 decisions per day?! Congratulations! You are closer than the average (14.4) of 139 participants who were asked exactly the same question in a study by Wansink and Sobal (2007). However, you might still be far off. Let’s have a closer look at the study.

Being aware of the impact nutrition has on our physical and mental health as well as brain functioning, you might expect people to make well-considered food decisions. Wansink and Sobal (2007) aimed to answer the two following questions:

Are we aware of how many food-related decisions we make?

The results are clear, indicating a large degree of unawareness regarding the number of daily food decisions. The participants underestimated the number of food-and beverage-related decisions in a day by more than 200 decisions. We make an estimated 226.7 food decisions each day. Were you close? The authors conclude that we often engage in mindless eating which results in a lack of control of our food intake. There is a need to increase the awareness of the decisions we make regarding what, when and how much we eat to promote a healthy lifestyle.

These findings raise the question which factors determine our food decisions if we don’t. One potential factor that should be considered is our environment which was addressed in the second question of the study.

Food Choices cartoonAre we aware of the environmental cues that lead us to overeat?

To shed light on the second question the authors analysed data from four studies in which participants were either assigned to the control condition or a so-called exaggerated treatment condition. Environmental factors such as package size, serving bowl and plate size differed for the two conditions. In each study participants in the treatment condition served/prepared/consumed more food than the control group (between 29 and 53 % more). Afterwards the 192 participants of the treatment group were asked “How much did you eat compared to what is typical for you?” Across all four studies 19 % said “less” and 73 % “about the same” as normally. Just 8 % were aware that they consumed more. Afterwards they were informed about the environmental cues and asked a second question: “In this study, you were in a group that was given [a larger bowl]. Those people in your group ate an average of 20%-50% more than those who were instead given [a smaller bowl]. Why do you think you might have eaten more?” Interestingly, 21 % still claimed they did not eat more. 69 % justified the greater food intake with being hungry and 6 % with other reasons. Just 4 % admitted that the environmental cues influenced them.

These findings highlight the unawareness or denial of the influence our environment has on us and our food intake. However, they can be used as a starting point to improve our nutrition. Changing your immediate environment to make it less conducive to overeating can help you improve your health. Start with putting the sweets just a bit further away from you.

Further information on how to make your environment less conducive to overeating you can find in the book “Slim by Design: Mindless Eating Solutions for Everyday Life” by Brian Wansink (https://www.slimbydesign.com/book)

You can also visit Brian Wansink’s website where you find more cartoons – like the one above -amongst other things: http://mindlesseating.org/index.php

Wansink, B., & Sobal, J. (2007). Mindless eating: The 200 daily food decisions we overlook.

Environment and Behavior, 39(1), 106-123.

http://journals.sagepub.com/doi/abs/10.1177/0013916506295573

 

Food is addictive. It has been an addiction that has kept mankind alive for thousands of years. Today, hunger is no longer a problem in the developed world; it is quite the opposite. According to the World Health Organization, worldwide obesity has nearly tripled since 1975. Obesity has reached epidemic proportions globally, with at least 2.8 million people dying each year as a result of being overweight or obese.

In order to maximize the nutritional value, humans are hard-wired to prefer foods that have either a high sugar or fat content. The amount of energy obtained from food is measured in kilocalories (kcal) per gram. Fats have the most energy (9 kcal) and carbohydrates (sugars and starches) have the same amount of energy as proteins (4 kcal). However, these nutrients differ in how quickly they supply energy. Sugars and starches have the advantage of being converted into energy faster than fats and protein. Protein is preferentially used for building and repairing different tissues, not as an energy source.

Once a beneficial adaptation of preferring fast digesting or the most energy-rich nutrients, has now become a risk factor for both physical and also mental health (1), making it an inevitable research focus.

In a recent study at the Yale University School of Medicine (2) it was determined that people not only favour fatty or sugary foods, but place the highest value on those that combine both. Participants (tasked to make monetary bids on different food items) were ready to pay the most for cookies, chocolate, cake and other treats that had both high sugar and also fat content. Equally familiar, liked and caloric fatty (e.g., cheese, salami) or sugary foods (e.g., lollipops) were assigned lower values.

Based on surges of activity, brain scans revealed that foods high in both fat and sugar were more rewarding than foods rich in only one category of nutrient.

Unexpectedly, it was also observed that participants were very accurate at estimating the energy density (kcal) of fatty foods, but poor at estimating the energy density of sugar-containing foods.

Once rare, but nowadays common and abundant treats high in both fat and sugar are most rewarding and therefore can very likely contribute to overeating. In addition, it has turned out to be difficult for people to assess the amount of calories in foods with a high sugar content. These findings taken together can help to understand and also hopefully find new treatment options for people struggling with obesity.

  • Hoare E et al (2015) Systematic review of mental health and well-being outcomes following community-based obesity prevention interventions among adolescents. BMJ Open 2015;5:e006586. doi:10.1136/bmjopen-2014-006586
  • DiFeliceantonio et al (2018) Supra-additive effects of combining fat and carbohydrate on food reward. Cell Metabolism 28, 1–12. doi:10.1016/j.cmet.2018.05.018

The human gut is colonized by microorganisms in a similar number as the cells of the human body.

“Microbiota” refers to these microorganisms, and it maintains a symbiotic relationship with the host, contributing to essential functions such as food digestion, energy harvest and storage, the function of the intestinal barrier, and the immune system and protection against pathogenic organisms. Prenatal and postnatal factors can alter the composition of the microbiota, such as stress and diet or the use of antibiotics (see image).

Prenatal and Postnatal factors influence gut-brain axis and mental healthFor instance, stress during pregnancy can alter the composition of vaginal microbiota, which affects the composition of the microbiota of the newborn and is related to gastrointestinal (GI) symptoms and allergic reactions. Interestingly, there is a bidirectional communication between the GI tract and the central nervous system (the gut-brain axis) that involves neuronal and metabolic pathways, immune and endocrine mechanisms. Changes in the composition of the microbiota can lead to altered development of the brain and increased risk of psychiatric and neurodevelopmental disorders, such as anxiety, depression and autism (see image).

Depression is one of the most recurrent stress-related disorders that highly impacts the quality of life. Fecal samples of patients with depression have a decreased microbial richness and diversity than controls. The use of probiotics have been shown to help with sad mood and negative thoughts, which may be a potential preventive strategy for depression.

Autism is characterized by impaired communication, poor social engagement and repetitive behaviours, with frequent GI symptoms. We know that the bacteria composition is more diverse in autistic individuals than in unaffected subjects.

For other psychiatric disorders, such as Attention deficit/hyperactivity disorder (ADHD) and Schizophrenia, there is indirect evidence for a role of the microbiota, but more studies are needed.

This connection between the gut and brain is two way communication, and is known as “The Gut-Brain Axis.”

Our knowledge of the impact of gut microbiota on brain function is growing fast, which may pave the way to possible applications for the treatment of psychiatric and neurodevelopmental disorders.

Authors Judit Cabana, Bru Cormand, and Noelia Fernandez Castillo are in the Department of Genetics, Microbiology & Statistics, University of Barcelona, Catalonia, Spain

More information can be found in: Felice VD, O’Mahony SM. The microbiome and disorders of the central nervous system. (2017) Pharmacol Biochem Behav. Sep;160:1-13.
https://www.ncbi.nlm.nih.gov/pubmed/28666895

It must have been mid-October 2017 that Oliver (8 years of age) and his family were referred to us by one of our co-workers. “Parents would like to know more about a dietary intervention for Oliver’s ADHD as opposed to medication. Oliver is falling behind at school due to attention difficulties and impulsivity. In addition to that, he has difficulty maintaining friendships and gets into fights every other day.” After screening Oliver’s behavioural problems both at home and at school, we concluded that Oliver fulfilled all inclusion criteria and none of the exclusion criteria: he and his family were most welcome to participate in our dietary intervention at New Brain Nutrition.

Oliver’s family consists of his mother, father and younger sister Liz (6 years of age). In addition to that, his grandmother and grandfather are closely involved in raising Oliver and Liz: they take care of their grandchildren two days a week (after school). One of the major difficulties that parents had to deal with in implementing the diet was that the grandparents were somewhat sceptical about the intervention. While grandfather had this ‘Well, boys will be boys’ kind of view on Oliver’s behaviour, his grandmother was more into a ‘The way to a man’s heart is through his stomach’ perspective, which led to pampering Oliver and Liz with candy on a daily basis. This called for some extra support from our researchers (who are also clinicians) in explaining the treatment to the grandparents. Eventually, all were on the same page and well-instructed before the start of the dietary intervention.

chocolate gooey browniesAt the start, parents filled out a baseline questionnaire on the behavioural problems (i.e. hyperactivity, impulsivity, attention deficits), physical problems (i.e. headache, stomach-ache, changes in appetite) and emotional difficulties (i.e. tantrums, mood swings) that Oliver dealt with. These measures were monitored by his parents on a daily basis (on a 5-points scale) for the following five weeks. These data were collected by our dietician on a weekly basis, while the dietician also monitored their adherence. In the first week, Oliver and his grandmother made a few dietary mistakes, but from the second week onwards, all became accustomed to the dietary protocol. Oliver’s mother encouraged all family members by setting shared goals on a weekly basis. For example, if the children earned a certain amount of stickers, they would go to the swimming pool by the end of first week, to a play-farm by the end of the second week, and so on.

After three weeks, a drop in behavioural problems was seen (from an average of 5/5 at baseline to an average of 3/5 after 3 weeks), while emotional difficulties (and the related fights with peers) were diminished after three weeks (from 5/5 on average at baseline to an average of 1/5 after 3 weeks). Physical complaints were not reported (1/5 on average at both baseline and after 3 weeks). His attentional problems however remained severe (4/5 on average at both baseline and after 3 weeks).

The decrease in problems persisted until the end of the first five weeks of the dietary intervention. Since the attentional problems kept interfering with Oliver’s school performances, school provided Oliver with a noise-cancelling headset after the fifth week.

The overall results led Oliver and his family to decide to proceed with the re-introduction of eliminated foods. This however was done after the holidays (Saint Nicholas, Christmas), which parents considered too much of a challenge to combine with a strict diet. Today (mid-February), Oliver and his family are in the midst of the re-introduction of foods. Every two weeks one new product is re-introduced in bulk. Oliver’s mother turns out to be a genius in creating attractive snacks and dishes that adhere to the dietary protocol. And Oliver? He is very proud of himself for sticking to the diet!

(Editor’s note: New Brain Nutrition is conducting numerous studies on food elimination diets and other nutrition and supplement topics through 2022.  Subscribe to our blog for updates.  We look forward to sharing a lot of information and findings with you.)

Nutrition as part of the solution to the mental health crisis!

Mental illness affects one in five people globally and, despite the wide availability of solid empirically supported therapies, these statistics are not getting any better. We appear to have reached an impasse improving outcomes, despite improvements in other areas of medicine.

We need to explore new avenues.

There has been a small explosion in research using nutrients for the treatment of mental illness over the last decade. The general premise is that our brains need nutrients to function and chemicals that are essential for good mental health, like dopamine and serotonin, require micronutrients, like vitamins and minerals.

Preliminary clinical trials are putting micronutrients and good nutrition on the map as essential for optimal brain health. These trials show that giving more nutrients than what is obtained through diet alone can have a positive impact on serious conditions, like Attention-Deficit/Hyperactivity Disorder (ADHD)(1), autism(2) or anxiety(3). Along a similar vein, other studies are highlighting that improving diet alone can also improve mental health. By showing that manipulation of the amount of nutrients one consumes can influence mental health, the research demonstrates that the nutrients these participants were receiving prior to these interventions were not adequate to meet their mental health needs.

Beyond a ‘sledge hammer’ solution

Nutrition and mental healthAt the moment though, in the area of nutrient supplementation research, we are taking a sledge hammer to the problem. We give everyone a broad array of nutrients and see who gets better. That’s been a good start in that significant changes in many areas of functioning have been observed in many people, but the problem is that we each have unique nutrient requirements.

This approach of “one size fits all” will only go so far. Some people don’t respond. Some people only get marginally better. Why? Can we use genetic and nutrient testing to determine the optimal dose and nutrients that someone may require to get better based on their individualized profile? Can we use microbiome analyses to determine what microbial strains are required to best heal the gut to optimize absorption of nutrients? Current and future technologies should allow us to greatly expand the number of people who benefit from a nutritional approach.

Can this research also be used to target our food choices? To date, nutritional value is not the primary motivator in food processing. Agricultural practices tend to prioritize food storage, growth rates, transportability, shelf life, colour, shape and size above nutrient content. Could scanning of nutrient levels of fruits and vegetables using your mobile phone bring focus to the importance of the nutrient quality of our food such that this becomes the priority of consumers over aesthetic qualities or price?

Food or medicine?

Some challenges lie ahead in access to nutrients. As soon as nutrients are proven to have therapeutic benefit, legislation in some countries requires that they be treated as medicines. In other cases, dose alone can affect classification as a supplement or medication. This means as the evidence for efficacy increases, accessibility to the general public will be reduced as the ministry may insist that nutrients be accessible only by prescription.

Based on the medical model, there is a belief that pills that improve health comes with side effects that must be carefully monitored and controlled. To date, our research has shown minimal to non-existent side effects from the nutrient combinations we have studied. Moreover, physicians are currently not well placed to prescribe nutrients because so few have training in nutrition.

Government has the power to ensure legislation allows easy access to nutrients and permits health claims to be made based on good science. Such legislation could ensure that nutrients are easily available due to the very low risk associated with consuming nutrients as compared with pharmaceutical drugs.

Further challenges

Some companies sell nutrient products that optimize profit over health benefit. This may result in cutting corners, not using minerals that have been well chelated, not using the most bioavailable forms of vitamins. This will impact efficacy. It will be a challenge to ensure that nutrients designed for improving mental health are not compromised. Snake oil salesmen are never too far away.

Ensuring good access to nourishing food will also be a challenge. The prevailing mindset is that good food is expensive. However, this is true only if one doesn’t count the costs associated with eating poorly. We need attitudes towards food to change from providing calories to providing the essentials of health. Perhaps one day we will all come to realize that so many packaged and highly processed foods are nutritionally depleted. Ideally, if consumers would stop buying these products, changes would follow.

It is encouraging that some people can have better mental health and more fulfilling lives simply by ensuring their brains receive adequate nutrients and that they will not have to experience the side effects associated with so many medications. Perhaps mental illness will be viewed as being at least partially caused by improper nutrition, as our ancestors knew. Could such a shift influence the stigma associated with mental illness?

Valuing the role of nutrition as part of addressing our mental health statistics is part of our future. How well we can ensure that access is optimized and price is affordable will depend on good legislation, a re-evaluation of our current health care model and ensuring competing market forces don’t compromise the acceptability and efficacy of this solution.

(1) Rucklidge JJ1, Frampton CM, Gorman B, Boggis A. Vitamin-mineral treatment of attention-deficit hyperactivity disorder in adults: double-blind randomised placebo-controlled trial. Br J Psychiatry.2014;204:306-15. doi: 10.1192/bjp.bp.113.132126. Epub 2014 Jan 30.

(2) Adams JB, Audhya T, McDonough-Means S, et al. Effect of a vitamin/mineral supplement on children and adults with autism. BMC Pediatrics. 2011;11:111. doi:10.1186/1471-2431-11-111.

(3) Rucklidge JJ1, Andridge R, Gorman B, Blampied N, Gordon H, Boggis A. Shaken but unstirred? Effects of micronutrients on stress and trauma after an earthquake: RCT evidence comparing formulas and doses. Hum Psychopharmacol. 2012 Sep;27(5):440-54. doi: 10.1002/hup.2246. Epub 2012 Jul 11.

Isn’t it amazing what a regular breakfast habit can do for you?

An old German saying states breakfast as the most important meal of the day. And it might be right! A review by Rampersaud and colleagues (2005)(1) investigated the effect of a regular breakfast habit on a variety of outcomes. They concluded that children and adolescents who typically ate breakfast – irrespective of the quality of the food – tended to have better nutritional profiles, were less likely to be overweight – even though they consumed more calories per day! – and had improved cognitive function (measured by memory assessment and test grades).

These findings are crucial since more than half of the high school students reported having skipped breakfast most days in the previous week. What was a big surpriseMuesli yogurt fruit was even a bowl of ‘unhealthy’ ready-to-eat cereal seems to be superior to not having breakfast at all.  However, to maximize the potential benefits of breakfast consumption, of course, a healthful breakfast should be favoured.

In addition to the effects stated above, children’s psychosocial functioning improved significantly when a school breakfast was introduced, indicating that it’s never too late to change your eating habits and benefit from the positive effects of a regular breakfast. A school breakfast program even had positive effects on measures of child depression and hyperactivity.

Parental Eating Habits Effect Children
Importantly, parental breakfast eating was not only a significant predictor of adolescent breakfast eating. The frequency of family meals was the most significant parental influence on adolescent eating habits and even increased the likelihood that children, as well as adolescents, made more healthy food choices in general. So whether you are a caring parent seeking to support your child’s mental health or whether you are a student seeking to improve your potential – remember the German saying when you enter the kitchen in the morning. Grab that whole grain bread, muesli or fresh fruit and vegetables and start your day with an extra portion of brain food and good nutrition!

(1) Rampersaud GC1, Pereira MA, Girard BL, Adams J, Metzl JD. Breakfast habits, nutritional status, body weight, and academic performance in children and adolescents. J Am Diet Assoc.2005 May;105(5):743-60; quiz 761-2. PMID: 15883552; DOI: 10.1016/j.jada.2005.02.007