Meet Tim: he is an 8-year-old boy, living in the Netherlands with his parents and younger sister. A couple of years ago, Tim was diagnosed with Attention Deficit Hyperactivity/Impulsivity Disorder (ADHD). His psychologist recommended to participate in the TRACE study: this study examines the short- and long term effects of dietary treatments in children with ADHD. In addition, the TRACE-BIOME study examines the underlying mechanisms of a dietary treatment. For this, we collect blood, stool, and saliva samples and we perform a fMRI. These measurements might, among other things, shed light on the role of the brain-gut-axis.

But what’s it like to participate in a scientific study? First of all, Tim was allocated to one of the two TRACE dietary treatments: an elimination diet or a healthy diet. Tim was allocated to the elimination diet. If we want to know if this diet is effective for Tim, we have to do a lot of different assessments (Figure 1).

Figure 1: assessments TRACE study

 

 

           

 

 

 

 


Before the baseline, 5 week and 1-year assessments, a couple of measurements already take place:

  • Tim wears an Actigraph one week before the assessment, which measures motor activity and sleep-wake rhythm;
  • Parents collect a stool sample from Tim in which his microbiota can be assessed;
  • Parents and teachers fill out different questionnaires about Tim’s behavior, but also about, for example, parenting styles;
  • Parents keep track of a food diary: what does Tim eat during two weekdays and one weekend day?

Before starting the elimination diet, Tim’s parents have a consult with one of the TRACE dieticians, so that they can prepare changing the diet of Tim. Then, it is time for the baseline assessment. Tim and his mother meet the researcher at the hospital for the blood venipuncture. He also has to chew on a cotton pad to collect a saliva sample. After this, they walk to Karakter which is a center for Child and Adolescent Psychiatry. The researcher measures his weight, length, blood pressure and heart rate. Next, Tim has to perform a task on the laptop which he really likes! This task assesses cognitive functions such as sustained attention, working memory, and cognitive flexibility. After the computer task, there is time for a break. Next, they start with behavioral observation. In this task, Tim first plays with his mother and then with the researchers. The different tasks try to elicit ADHD symptoms and emotion (dys)regulation behavior. Finally, the MRI researcher takes Tim and his mother to the fMRI scanner in which he has to do two different tasks. All in all, the assessment takes about 4 hours.

After 5 weeks of the diet, it is time for the second assessment which is the same as the baseline assessment. The researcher has calculated, based on the parent and teacher questionnaires, if there is a significant response to the diet. Tim shows a 40% reduction of ADHD symptoms, which is a significant response! Therefore, they continue the diet. After 4 and 8 months of the diet, his parents receive some online questionnaires. Finally, after one year they are invited for the final assessment, which is again the same as the baseline assessment (without the fMRI).

The following movie explains the assessments described above, in Dutch: 

Please share and like us:
error

In times of stress, there are mainly two eating patterns in which people react: some tend to eat less, some eat more (Yau & Potenza, 2013). The latter then, unfortunately, develop a desire for more salty, sweet and fatty foods, leading to negative health consequences such as weight gain (Groesz et al., 2012) which in turn may influence their mental health.

But why does this happen? What is the science behind this?

The brain controls our body functions and continuously adapts to new situations. For the survival of humans, it is essential that the brain is sufficiently energized at all times. Under stress, the brain needs more energy than under normal circumstances leading the brain to act in a selfish manner. The selfish brain theory by the German scientist Achim Peters (2011) describes the relationship between the brain’s energy requirement and food intake: according to this concept, the brain is given a priority role in the hierarchy of energy metabolism. Therefore, the brain takes care of itself first and claims the energy it needs from the body. The brain pull mechanism is the underlying instrument to request the energy needed, by limiting glucose flow into muscle and fat tissue, so that glucose is primarily available to the brain. If the body can’t provide the necessary energy immediately, the brain forces us to eat. And this results in eating the above-mentioned food. It delivers quickly available glucose to the brain.

Why do some people react to stress by eating more and others by eating less?

Stress responsiveness is thought to be related to different adaptation processes. Exposure to long term stressors may lead to an increased adaptation, reducing the ability of the brain pull mechanism to draw the energy needed directly from the body, thus producing the need to eat. Not adapting to stress and keeping your stress response high will probably lead to less eating.

Why does the brain eat first?

The privileged role of the brain can be explained by the evolutionary past. In life-threatening situations, highest attention was required to react quickly. So, our body has a mechanism to keep our brain functioning: It is assigned a priority role so it can continuously fill its energy needs in order to protect us from possible dangers. It is proven that during inanition the mass of the brain remains constant compared to other organs, which lose about 40% of their mass.

So, what can help us not to eat in an unfavorable manner under stress?

Since everyday stress can hardly be avoided, it is advisable to eliminate temptations and avoid snacking, such as donuts, pizza or any kind of energy-dense foods. For example, in the office: make sure that healthy food is available and prefer fresh unprocessed food, like moderate portions of berries, bananas, nuts (walnuts, almonds), dried fruits (e.g. figs) or perhaps a non-sweetened granola bar. Nuts contain good omega 3 fatty acids and are good for your nerve cells.  When stressed, 5-6 small meals spread throughout the day help to keep the energy level constant. In the office a good lunch could be a mixed salad with chicken breast stripes. Take a break and eat mindfully. Try not to eat hastily, the loss of time spent eating will be rewarded by being able to concentrate better. Drinking lots of water or green tea and avoiding too much coffee and sugared soft drinks will help to prevent a lack of concentration. Water is a healthy way to regulate thirst and has absolutely no calories.

REFERENCES:
Groesz, L. M., McCoy, S., Carl, J., Saslow, L., Stewart, J., Adler, N. et al. (2012). What is eating you? Stress and the drive to eat. Appetite, 58(2), 717–721. https://doi.org/10.1016/j.appet.2011.11.028

Peters, A., Kubera, B., Hubold, C. & Langemann, D. (2011). The selfish brain: Stress and eating behavior. Frontiers in Neuroscience, 5, 1-11. https://doi.org/10.3389/fnins.2011.00074

Schlieper, C. A. (2010). Grundfragen der Ernährung. Hamburg: Büchner.

Yau, Yvonne H. C.; Potenza, Marc N. (2013). Stress and Eating Behaviors. Minerva Endocrinol, 38(3): 255–267. Link: https://www.ncbi.nlm.nih.gov/pubmed/24126546

Please share and like us:
error

Recently I had a great chance to participate in the 19th WPA World Congress of Psychiatry which took place in Lisbon 21-24 of August 2019. Such an international scientific event summarizes recent findings and sets a trend for future research.

The effect of lifestyle on mental health was one of the topics discussed at the conference. Focusing on nutritional impact in psychiatry I will review here some of the studies – research done in animal models or patients and literature reviews – which were presented at the Congress.

All the poster presentations can be viewed on the conference website https://2019.wcp-congress.com/.

Dietary patterns and mental health

  1. Sanchez-Villegas and colleagues from Spain1 presented research on the Mediterranean diet’s effects in patients recovered from depressive disorders. They found that adherence to Mediterranean diet supplemented with extra-virgin olive oil led to the improvement of depressive symptoms. This new study supports previous reports about positive effects of traditional dietary patterns compared to so-called “Western diet”, and this topic was nicely reviewed in the poster presentation of M. Jesus and colleagues (Portugal)2.

I presented a poster3 on a study done in a mouse model of Western diet feeding. We found that genetic deficiency of serotonin transporter exacerbates metabolic alterations and such behavioural consequences of the Western diet as depressive-like behaviour and cognitive impairment. In human, carriers of a genetic variant that reduces serotonin transporter expression are known to be more susceptible to emotionality-related disorders and prone to obesity and diabetes.

Vitamin D and Mental Health

Nutritional psychiatry was traditionally focused on the effects of vitamins and micronutrients on mental health. Several presentations at this conference were dedicated to the role of vitamin D in mental disorders.

Scientists from Egypt (T. Okasha and colleagues)4 showed their results on the correlation between serum level of vitamin D and two psychiatric disorders: schizophrenia and depression. They found lower serum vitamin D levels in the patients with schizophrenia or depression compared to healthy volunteers. These findings indicate a role of vitamin D in the development of psychiatric disorders.

However, the team from Denmark (J. Hansen and colleagues)5 did not find any effect of 3 months vitamin D supplementation on depression symptoms in patients with major depression. The contrariety of the studies on vitamin D benefits in mental health was presented on the review poster by R. Avelar and colleagues (Portugal)6.

Microbiome and Mental Health

There is increasing evidence that microbiota-gut-brain axis influences behaviour and mental health. N. Watanabe and colleagues (Japan)7 presented the results of a study on germfree and commensal microbiota-associated mice. They found increased aggression and impaired brain serotonin metabolism in germfree mice.

  1. Dias and colleagues (Portugal)8 performed a literature review on this topic exploring possible effects of microbiome and probiotics in mental disorder development. The most robust evidence was found for the association of microbiome alterations and depression/anxiety. Up to date literature is lacking replicated findings on proving positive effects of probiotics in mental disorders treatment.

Diabetes Type 2 and Mental Disorders

Risk factors for type 2 diabetes include diet and lifestyle habits. It is getting more obvious that there is an association between type 2 diabetes and the development of mental disorders.

  1. Mhalla and colleagues (Tunisia)9 reported a study done on patients with type 2 diabetes. They found a high prevalence of depression in women with type 2 diabetes. Also, depression in these patients was associated with poorer glycemic control.

Depression is an important factor influencing insomnia. H.C. Kim (Republic of Korea)10 found insomnia in one-third of patients with diabetes type 2.

The group from Romania (A. Ciobanu and colleagues)11 created a meta-analysis of the medical literature showing an association of diabetes type 2 with Alzheimer’s disease. They highlighted the role of insulin signaling in cognition and proposed glucose blood level control as a therapeutic approach in Alzheimer’s disease.

 

Thus, a lot of studies were recently done on the role of nutrition in psychiatric disorders development and therapy. However, there is still room for future discoveries!

REFERENCES:
From 19th WPA World Congress of Psychiatry proceedings:

  1. Sanchez-Villegas, B. Cabrera-Suárez, M. Santos Burguete, P. Molero, A. González-Pinto, C. Chiclana, J. Hernández-Fleta. INTERVENTION WITH MEDITERRANEAN DIET IN THE IMPROVEMENT OF DEPRESSIVE SYMPTOMS IN PATIENTS RECOVERED FROM DEPRESSIVE DISORDER. PREDI-DEP TRIAL PRELIMINARY RESULTS;
  2. Jesus, C. Cagigal, T. Silva, V. Martins, C. Silva. DIETARY PATTERNS AND THEIR INFLUENCE IN DEPRESSION;
  3. Veniaminova, A. Gorlova, J. Hebert, D. Radford-Smith, R. Cespuglio, A. Schmitt-Boehrer, K. Lesch, D. Anthony, T. Strekalova. THE ROLE OF GENETIC SEROTONIN TRANSPORTER DEFICIENCY IN CONSEQUENCES OF EXPOSURE TO THE WESTERN DIET: A STUDY IN MICE;
  4. Okasha, W. Sabry, M. Hashim, A. Abdelrahman. VITAMIN D SERUM LEVEL AND ITS CORRELATION WITH MAJOR DEPRESSIVE DISORDER AND SCHIZOPHRENIA;
  5. Hansen, M. Pareek, A. Hvolby, A. Schmedes, T. Toft, E. Dahl, C. Nielsen7, P. Schulz8. VITAMIN D3 SUPPLEMENTATION AND TREATMENT OUTCOMES IN PATIENTS WITH DEPRESSION;
  6. Avelar, D. Guedes, J. Velosa, F. Passos, A. Delgado, A. Corbal Luengo, M. Heitor. VITAMIN D AND MENTAL HEALTH: A BRIEF REVIEW;
  7. Watanabe, K. Mikami, K. Keitaro, F. Akama, Y. Aiba, K. Yamamoto, H. Matsumoto. INFLUENCE OF COMMENSAL MICROBIOTA ON AGGRESSIVE BEHAVIORS;
  8. Dias, I. Figueiredo, F. Ferreira, F. Viegas, C. Cativo, J. Pedro, T. Ferreira, N. Santos, T. Maia. EMOTIONAL GUT: THE RELATION BETWEEN GUT MICROBIOME AND MENTAL HEALTH;
  9. Mhalla, M. Jabeur, H. Mhalla, C. Amrouche, H. Ounaissa, F. Zaafrane3, L. Gaha. DEPRESSION IN ADULTS WITH TYPE 2 DIABETES: PREVALENCE AND ASSOCIATED FACTORS;
  10. Kim. FACTORS RELATED TO INSOMNIA IN TYPE 2 DIABETICS;
  11. A. Ciobanu, L. Catrinescu2, C. Neagu3, I. Dumitru3. THE CONNECTION BETWEEN ALZHEIMER’S DISEASE AND DIABETES

 

Please share and like us:
error

Mens sana in corpore sano – healthy mind and healthy body

Food insecurity – defined as an individual or household lacking access to sufficient, safe, and nutritious food that meets individuals’ dietary needs – has been linked to children’s behavioral, academic, and emotional problems and an increased risk of the development of mental health disorders [1, 2].

In a Canadian study on food insecurity in young children, researchers found that children from food-insecure families were disproportionately likely to experience persistent symptoms of hyperactivity and inattention. These results were still true after controlling for immigrant status, family structure, maternal age at child’s birth, family income, maternal and paternal education, prenatal tobacco exposure, maternal and paternal depression and negative parenting [3].

Accordingly, a systematic review on food insecurity and attention-deficit hyperactivity disorder (ADHD) symptoms in children reported a predictive and inverse relationship between the two, with possible lasting impacts into adulthood. Authors concluded that evidence exists to hypothesize that childhood food insecurity is associated with predisposing or exacerbating ADHD symptoms in children [4].

In 2017 Dr. Raju, President of the Indian Psychiatric Society concluded in a speech on medical nutrition in mental health and disorders that there is growing evidence for a relationship between quality of diet and mental health. According to Raju, the importance of nutrients as important agents for prevention, treatment, or augmentation of treatment for mental disorders has been established. “Empathic interactions and rational nutrition along with specific pharmacological and physical interventions could form an ideal and humane patient-friendly package in psychiatric practice” [5].

Therefore, identifying families in risk of food insecurity and getting children and adolescents the best possible food supply could result in fewer children with ADHD symptoms.

REFERENCES:

  1. Althoff, R.R., M. Ametti, and F. Bertmann, The role of food insecurity in developmental psychopathology. Prev Med, 2016. 92: p. 106-109.
  2. Shankar, P., R. Chung, and D.A. Frank, Association of Food Insecurity with Children’s Behavioral, Emotional, and Academic Outcomes: A Systematic Review. J Dev Behav Pediatr, 2017. 38(2): p. 135-150.
  3. Melchior, M., et al., Food insecurity and children’s mental health: a prospective birth cohort study. PLoS One, 2012. 7(12): p. e52615.
  4. Lu, S., et al., The Relationship between Food Insecurity and Symptoms of Attention-Deficit Hyperactivity Disorder in Children: A Summary of the Literature. Nutrients, 2019. 11(3).
  5. Raju, M., Medical nutrition in mental health and disorders. Indian J Psychiatry, 2017. 59(2): p. 143-148.
Please share and like us:
error

Why do we eat what we eat? What makes us choose an apple over chocolate cake, or the other way around? How do we decide whether or not to have that tempting dessert, despite feeling satiated after a hearty meal? I previously wrote about how our daily food choices are, at least in part, influenced by our genetic make-up, but there are many other factors determining what, when, where and why we eat. Today I will discuss the importance of personality traits.

Personality is a set of relatively stable traits, that together determine who we are. While some characteristics of us change day by day, or even hour by hour, others are more stable. For instance, although we all feel worried from time to time, you may – generally speaking – be easily worried or nervous. The famous Big Five model of personality proposes that all people can be described in terms of five traits: neuroticism, agreeableness, openness to experience, conscientiousness and extraversion. These five traits in turn host a number of more specific characteristics, such as impulsivity, self-consciousness, anger, excitement seeking and thoughtfulness.1

What does this have to do with eating habits? Well, as it turns out, specific personality traits are associated with different food choices. Most studies look at healthy versus unhealthy food choices. A healthy diet has consistently been associated with the Big Five trait “conscientiousness”, which includes characteristics such as self-discipline, diligence, thoughtfulness and goal-orientedness. An unhealthy diet, on the other hand, has been associated with neuroticism, stress-sensitivity and impulsivity.2 Impulsivity and neuroticism have also been linked to emotional eating, binge-eating, external eating and (not surprisingly) stress-eating and impulsive eating (e.g. 3).

So, among the numerous factors influencing what, when, where and why we eat, how important are personality traits? Imagine a test in which we ask participants to choose between an apple and chocolate cake. Indeed, knowing how impulsive, neurotic and conscientious these participants are helps us better predict what they’ll choose; however, the accuracy of our prediction would improve only very slightly compared to a prediction without knowing the participants’ personality. In my own study (which is ongoing and therefore yet unpublished), I found that those with an extremely high score on an impulsivity questionnaire (i.e. higher than 97% of all other participants), on average, consumed 2192 kcal per day, compared to an average of 2030 kcal/day for those with an extremely low impulsivity score (i.e. those scoring lower than 97% of all other participants). For self-discipline, a trait belonging to the conscientiousness domain, the effect was even smaller: extremely self-disciplined people on average consumed only 112 kcal per day less compared to people with an extreme lack of self-discipline. To give you an indication, 112 kcal equals about one medium-sized cookie, or one glass of orange juice. In other words, being a conscientious person doesn’t mean one will always choose the healthy option over the unhealthy one; nor will impulsive or neurotic people always choose chocolate over apples.

Mind you, the above reported findings are associations. Although it is compelling to think that impulsivity causes us to make unhealthy food choices, it may in fact be the other way around! Perhaps an unhealthy lifestyle makes us more impulsive. We do know, for instance, that certain mental health conditions can be improved by healthier diets, suggesting that what we eat can change the way we feel and behave (rather than the other way around). This question of “direction of causality” is an important and very challenging issue that we, researchers, urgently need to tackle.

Finally, a few words on attention-deficit hyperactivity disorder (ADHD); after all, impulsivity is one of its key symptoms. Does this mean that people with ADHD make less healthy food choices? Indeed, this seems to be the case. Studies have shown that – on average – people with ADHD have less healthy eating habits4, and are more prone to overweight and obesity5,6, compared to people without ADHD. However, other factors associated with ADHD may contribute to poorer eating habits as well. For instance, lower socio-economic status makes healthier foods less accessible to people with ADHD, as healthier foods are generally more expensive; also, lower levels of education may result in people with ADHD knowing less about healthy and unhealthy lifestyles.

REFERENCES

  1. Costa, P.T., McCrae, R.R. (1992). Revised NEO Personality Inventory (NEO-PI-R) and NEO Five-Factor Inventory (NEO-FFI) manual. Odessa, FL: Psychological Assessment Resources
  2. Stevenson (2017). Psychological correlates of habitual diet in healthy adults. Psychological Bulletin, 143(1), 53-90
  3. Keller, C. & Siegrist, M. (2015). Does personality influence eating styles and food choices? Direct and indirect effects. Appetite, 84, 128-38
  4. Ríos-Hernández, A., Alda, J.A., Farran-Codina, A., Ferreira-García, E., Izquierdo-Pulido, M. (2017). The Mediterranean Diet and ADHD in Children and Adolescents. Pediatrics, 139(2)
  5. Bowling, A.B., Tiemeier, H.W., Jaddoe, V.W.V., Barker, E.D., Jansen, P.W. (2018). ADHD symptoms and body composition changes in childhood: a longitudinal study evaluating directionality of associations. Pediatric Obesity, 13(9):567-575
  6. Chen, Q., Hartman, C.A., Kuja-Halkola, R., Faraone, S.V., Almqvist, C., Larsson, H. (2018). Attention-deficit/hyperactivity disorder and clinically diagnosed obesity in adolescence and young adulthood: a register-based study in Sweden. Psychological Medicine, 1-9 (e-pub)
Please share and like us:
error

In our Eat2BeNice project, we want to know how lifestyle-factors, and nutrition contribute to impulsive, compulsive, and externalizing behaviours. The best way to investigate this is to follow lifestyle and health changes in individuals for a longer period of time. This is called a prospective cohort study, as it allows us to investigate whether lifestyle and nutrition events at one point in time are associated with health effects at a later point.

Luckily we can make use of the LifeGene project for this. LifeGene is a unique project that aims to advance the knowledge about how genes, environments, and lifestyle-factors affect our health. Starting from September 2009, individuals aged 18 to 45 years, were randomly sampled from the Swedish general population. Participants were invited to include their families (partner and children). All study participants will be prompted annually to respond to an update web-based questionnaire on changes in household composition, symptoms, injuries and pregnancy.

The LifeGene project (1) consists of two parts: First, a comprehensive web-based questionnaire to collect information about the physical, mental and social well-being of the study participants. Nine themes are provided for adults: Lifestyle (including detailed dietary intake and nutrition information), Self-care, Woman’s health, Living habits, Healthy history, Asthma and allergy, Injuries, Mental health and Sociodemographic. The partners and children receive questions about two to four of these themes. For children below the age of 15 the parents are requested to answer the questions for them.

The second part is a health test: at the test centres, the study participants are examined for weight, height, waist, hip and chest circumference, heart rate and blood pressure, along with hearing. Blood and urine samples are also taken at the test centres for analysis and bio-banking.

Up until 2019, LifeGene contains information from a total of 52,107 participants. Blood, serum and urine from more than 29,500 participants are stored in Karolinska Institute (KI) biobank. From these we can analyze genetic data and biomarkers for diabetes, heart disease, kidney disease and other somatic diseases. Based on LifeGene, we aim to identify nutritional and lifestyle components that have the most harmful or protective effects on impulsive, compulsive, and externalizing behaviors across the lifespan, and further examine whether nutritional factors are important mediators to link impulsivity, compulsivity and metabolic diseases(e.g. obesity, diabetes). We will update you on our results in the near future.

For more information, please go to the LifeGene homepage www.lifegene.se. LifeGene is an open-access resource for many national and international researchers and a platform for a myriad of biomedical research projects. Several research projects are underway at LifeGene https://lifegene.se/for-scientists/ongoing-research/.

This was co-authored by Henrik Larsson, professor in the School of Medical Science, Örebro University and Department of Medical Epidemiology and Biostatistics, Karolinska Institute, Sweden.

AUTHORS:
Lin Li, MSc, PhD student in the School of Medical Science, Örebro University, Sweden.

Henrik Larsson, PhD, professor in the School of Medical Science, Örebro University and Department of Medical Epidemiology and Biostatistics, Karolinska Institute, Sweden.

REFERENCES:

  1. Almqvist C, Adami HO, Franks PW, Groop L, Ingelsson E, Kere J, et al. LifeGene–a large prospective population-based study of global relevance. Eur J Epidemiol. 2011;26(1):67-77.
Please share and like us:
error

The bacteria in your gut affect blood insulin levels and may influence your chances of developing type 2 diabetes

Developing type 2 diabetes is for a large part influenced by your diet but also genes. However, a recent study has now shown that your gut microorganisms might also play an important role in the risk of developing type 2 diabetes (T2D). The article published in Nature Genetics entitled “Causal relationships among the gut microbiome, short-chain fatty acids (SCFA’s) and metabolic diseases”, claims evidence that bacterial metabolites such as SCFA’s are able to influence insulin levels and increase the risk of getting T2D.

Various studies have suggested that increased SCFA production benefits the host by exerting anti-obesity and antidiabetic effects, however, results of different studies are not always in agreement. Moreover, there is also evidence that increased production of SCFAs in the gut might be related to obesity, due to energy accumulation. Resolving these conflicting findings requires a detailed understanding of the causal relationships between the gut-microbiome and host energy metabolism, and the present study contributes to this.

The authors analyzed data from a large population study based in Groningen (The Netherlands), comprising 952 individuals with known genetic data, as well as information on parameters associated with metabolic traits such as BMI and insulin sensitivity. In addition, data were acquired for the type and the function of the bacteria which were present in the gut of the study participants. Combining this data, the authors tried to answer the question of whether changes in microbiome features causally affect metabolic traits or vice versa?

A technique called Mendelian randomization (MR) which is increasingly accepted to establish cause-effect relationships in the onset of diseases was applied. The primary outcome of the analysis was that host genes influence the production of the SCFA butyrate in the gut, which is associated with improved insulin response in the blood after an oral glucose tolerance test. In addition, abnormalities in the production or absorption of propionate, another SCFA, were causally related to an increased risk of T2D.

So far available data suggest that overweight humans or those with type 2 diabetes may have different microorganisms in their gut compared to healthy people. These microorganisms which are commonly found in healthy people are absent from the T2D patients. Whether the differences in the microbiota between healthy and T2D patients are an effect of the disease development or account for causality is challenging to be answered. With the data from the present study, authors are able to go one step further and demonstrate potential routes by which microorganisms are able to regulate our metabolic status underlying their importance for our wellbeing.

Collectively the present article suggests that production of bacterial SCFA’s play a pivotal role in the regulation of metabolic traits such as blood insulin levels and are associated with the onset of T2D.

Since the study was observational and did not include any T2D patients, confirmation of the results is essential. Follow up studies including T2D patients would be highly informative. With the rising prevalence of obesity in adults, which is reaching epidemic levels, the prevalence of T2D will also continue to rise. In the past years, scientists have mainly focused on the role of human gene data, but this has not led to major breakthroughs. Perhaps knowledge of the microbiome will elucidate molecular mechanisms which can be translated to novel effective treatments for metabolic disorders such as T2D.

REFERENCES
Sanna, S., van Zuydam, N. R., Mahajan, A., Kurilshikov, A., Vila, A. V., Võsa, U., . . . Oosting, M. (2019). Causal relationships among the gut microbiome, short-chain fatty acids and metabolic diseases. Nature genetics, 1.

Please share and like us:
error

MoBa is short for The Norwegian Mother and Child Cohort Study which is a large pregnancy observational study. During the years 1999-2008 pregnant women in Norway were recruited to the study. The study is conducted by the Norwegian Institute of Public Health. Questionnaires regarding health, diet and environment were sent out to the women during and after pregnancy. Women are sent regular follow-up questionnaires. As the child grows up, the child also completes questionnaires. In addition, the fathers were invited to participate with a questionnaire when their partner was pregnant. Biological samples were also collected from the mother, father and child. Today there are 114 500 children, 95 000 mothers and 75 000 fathers participating in the study.

https://www.fhi.no/en/studies/moba/

The study was set up to gain knowledge about the causes behind serious disease. The study is unique because it gathers information from fetal (in vitro) life and follows the offspring into adulthood. In this manner it is possible to look at early influences and later disease. The study is prospective, which means that information about mothers, fathers and their offspring is registered before a disease has manifested itself. With this design, women are asked questions several times during her pregnancy and do not have to try to remember what she did when looking back at her pregnancy.

MoBa is population-based and became nationwide with 50 participating hospitals in Norway. For more information on the many publications based on MoBa data, visit this link:

https://www.fhi.no/en/studies/moba/for-forskere-artikler/publications/

The participating women in MoBa also filled in a questionnaire about eating habits before and during pregnancy.

.

Please share and like us:
error

Why do some people have a higher craving for carbohydrate-rich and junk-food than others? Why are weight-loss programs more effective in some individuals than others? And why are some people more physically active?

The dopamine system in the brain plays an important role in regulating how much you eat and whether or not you gain weight. When this system does not function optimally, people have a higher craving for junk-food, lower physical activity, and unsuccessful body weight control.

There are two mechanisms that determine food-related behaviour.

The more direct, homeostatic, mechanism constantly surveys the body’s energetic needs and holds them actively in balance. That is homeo-stasis.

The second non-homeostatic mechanism determines the way humans, and other animals, react to food: how willingly and often they will consume it again, and whether they feel anticipation or craving for it.

These behaviours are both largely regulated by the neurotransmitter dopamine, a chemical that conveys information in the brain. Once released by one nerve cell it binds to a receptor, a large molecule on the surface of the adjacent nerve cell, thus changing its functioning. A major component in eating-related behaviour is the dopaminergic D2 receptor (DRD2) that is most abundantly localized in striatum, a brain region activated by food anticipation and consumption1.

The function of the dopaminergic system affects eating and weight-related problems in four ways.

First, in some people, the dopamine system reacts more vigorously in response to food.

Second, this response leads to increased eating and possibly obesity.

Third, overeating and obesity lead to less efficient dopaminergic signaling.

Fourth, this lower dopaminergic signal needs to be compensated by more intense behaviour e.g., more eating2.

For example, in people with lower levels of dopamine D2 receptor, cravings for carbohydrate-rich food and junk-food are more prevalent3,4.

Besides eating-related behaviour, dopamine also affects health/obesity via voluntary physical activity, creating a vicious circle: obesity leads to weaker dopaminergic signal, especially lower levels of DRD2 receptor, and this, in turn, leads to decreased exercise and motivation for physical activity5–7.

Furthermore, individuals with lower levels of DRD2 receptors may benefit less from long-term weight loss programs and are less effective in weight maintenance8,9. Thus, dopamine affects body weight via choice of foods, physical activity, and body weight reduction efficacy. Despite the reasons for food-cravings, part of the solution is acknowledging and managing these impulses. Conscious action towards weight-reduction will lead to less pronounced food-cravings, which in turn leads to favourable solution of weight related problems10.

REFERENCES
1. Wise, R.A. Philos Trans R Soc Lond B Biol Sci 361, 1149–1158 (2006).

2. Alonso-Alonso, M. et al. Nutrition reviews 73, 296–307 (2015).
3. Lek, F.-Y., Ong, H.-H. & Say, Y.-H. Asia Pac J Clin Nutr 27, 707–717 (2018).
4. Yeh, J. et al. Asia Pac J Clin Nutr 25, 424–429 (2016).
5. Kravitz, A.V., O’Neal, T.J. & Friend, D.M. Front Hum Neurosci 10, 514–514 (2016).
6. Matikainen-Ankney, B.A. & Kravitz, A.V. Ann N Y Acad Sci 1428, 221–239 (2018).
7. Ruegsegger, G.N. & Booth, F.W. Front Endocrinol 8, 109–109 (2017).
8. Roth, C.L., Hinney, A., Schur, E.A., Elfers, C.T. & Reinehr, T. BMC Pediatr 13, 197–197 (2013).
9. Winkler, J.K. et al. Nutrition 28, 996–1001 (2012).
10. Smithson, E.F. & Hill, A.J. Eur J Clin Nutr 71, 625 (2016).

Please share and like us:
error

Have you ever heard of the Okinawa Islands, located between Japan and Taiwan, which host one of the longest living people in the world? Even compared with the rest of Japan, to which the islands belong, people grow older on Okinawa.

On average, women become 86 years, men 78 years (1). And more than that, people there maintain a good health up until a very high age. So, what exactly is it that the Okinawans do differently? And what can we change in our lives to get the same positive effects for our health?

Research has extracted many factors that might contribute to this striking longevity, such as a constant moderate physical activity, lack of time pressure and the importance of a solid family structure (see also my blog on effective lifestyle changes here: https://newbrainnutrition.com/four-easy-rules-for-healthy-eating-and-lifestyle/).

What might be easier to change in our everyday lives, however, is the composition of the food we eat.

Let’s investigate what makes the Okinawan diet so healthy (2):

Their diet is rich in root vegetables, especially the very healthy sweet potato. (Who would have guessed that a vegetable carrying the term “sweet” could be more beneficial for your health than its common counterpart?). Sweet potatoes have a high content of dietary fibers, anti-oxidant vitamins A, C and E and anti-inflammatory properties.

They eat many legumes, such as soybeans.

An abundance of mostly green and yellow vegetables is eaten regularly.

Okinawans don’t abstain from meat, alcohol or tea. They consume it in moderation, choosing lean meat and products from the sea.

It seems that no food should be strictly avoided, but that it’s more like the phrase: “Eat everything in moderation and not in abundance.”

Different fruit and medicinal plants (like curcumin or bitter melon) further contribute to a healthy and diverse cuisine.

Altogether, their food is high in unrefined carbohydrates (refined carbohydrates occur e.g. in sweets or white bread, unrefined carbohydrates occur e.g. in brown rice or wholemeal bread) and they consume protein in moderate amounts and mostly plant-based (from legumes, vegetables, but also occasionally from fish or meat).

The Okinawan diet is characterized by a healthy fat profile: rich in omega-3 fatty acids (which occur in fatty fish like salmon, but also in seeds, like flaxseeds, and nuts), high in other polyunsaturated and monounsaturated fatty acids (occurring e.g. in olive oil or avocado, and low in saturated fats (e.g. occuring in butter).

Hence, its composition resembles that of the Mediterranean Diet, which also is associated with a lower risk of cardiovascular disease and other age- and lifestyle-related diseases (Download your free report on the current state of research on the Mediterranean diet here: https://newbrainnutrition.com/the-mediterranean-diet-and-depression-free-report-download/).

By changing our diet and adapting it to the Okinawan (or Mediterranean) diet, you could contribute to a long and healthy life.

Now you might ask how this relates to “new brain nutrition”? Well, a healthy diet affects our gut, which is linked closer to our brain than we originally have assumed (learn more here: https://newbrainnutrition.com/the-gut-brain-axis-an-important-key-to-your-health/​).

Hence, diet should have an impact on our brain health just as on our general health. Substances from fermented soy beans (so-called ​natto), for example, are said to have the potential to prevent the formation of plaque in the brain, which is related to Alzheimer’s disease.

Also, anti-inflammatory effects of a high polyunsaturated fatty acid consumption might have an effect on the production of neurotransmitters (essential for the transfer of information between nerve cells), which largely takes place in the gut.

Interestingly, due to a more western-style cuisine, the younger Okinawans are starting to face the same diseases such as diabetes, high blood pressure, etc, just as people from the rest of the world.

Diet matters. So: What changes in your diet do ​you​ want to start with?

Take the first step and try a typical Okinawa dish: Goya Champuru

1 Goya cucumber (may also be frozen)

1 block tofu, dried and as firm as possible approx. 80-100g

Shabu-Shabu meat (thinly sliced pork); cut meat into bite-sized pieces

1-2 tablespoons soy sauce

1-2 tablespoons rice wine (sake)

1/2 teaspoon salt

2 tablespoons neutral oil (must be suitable for frying!)

2 eggs

For vegetarians: Follow the same recipe, but replace Shabu-Shabu with chopped vegetables like carrots, onions, cabbage and bean sprouts or pumpkin.

Wash the Goya cucumber, cut it in half and remove the seeds with a spoon. Slice thinly, salt it, let it rest for a few minutes. Wash again, press firmly to remove as much water as possible.

Stir-fry the Shabu-Shabu in a tablespoon of oil, salt it afterward.

Add tofu and stir-fry it until it turns slightly dark. Put tofu and Shabu-Shabu aside.

In the same pan, heat another tablespoon of oil and stir-fry the Goya cucumber in high temperature.

Add the meat and tofu, then soy sauce and sake, stir.

Scramble two eggs and add them.

Stir and don’t let the food turn too dry.

Serve the Champuru with rice.

REFERENCES
(1) https://de.wikipedia.org/wiki/Präfektur_Okinawa

(2) Willcox DC; Scapagnini G; Willcox BJ. Healthy aging diets other than the Mediterranean: a focus on the Okinawan diet.Mech Ageing Dev. 2014; 136-137:148-62 (ISSN: 1872-6216); found here: https://www.sciencedirect.com/science/article/pii/S0047637414000037

Please share and like us:
error


Welcome to New Brain Nutrition. You can enjoy FREE Online Courses when you Log In or Join here.

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 728018

New Brain Nutrition is a project and brand of Eat2BeNice, a consortium of 18 European University Hospitals throughout the continent.

Partners:
You may log in here to our Intranet website with your authorized user name and password.