We, human beings in Western society, make over 200 food choices each day (1). That’s a lot! Fortunately (or, according to others, unfortunately), we don’t actually have to think about each and every one of them, or at least not consciously. If our food choices are not so much a conscious decision, then how do we make them? A lot has been written about external factors influencing our food choices, for instance, alluring displays in supermarkets or the availability of unhealthy foods in our day-by-day environment. In this blog, I will address the potential role of genetics on food choices: to what extent do our genes determine what we eat?

Eating behaviours are complex, i.e. they are very diverse and influenced by many different factors. When we investigate complex behaviours, we are unlikely to find simple explanations. In other words: we do not expect to find one gene that makes me prefer pizza margarita over pizza fungi, nor will we find a single gene responsible for my triple-chocolate ice cream consumption. There are, however, some instances in which specific genes have relatively simple and straightforward effects on our food choices. This is the case when genetic variants code for food sensitivities.

A famous example is the LCT gene (or, more precisely, the C>T change at 13910 bases upstream of the LCT gene in the 13th intron of the MCM6 gene). The LCT gene codes for lactase persistence, or lactose tolerance after childhood. Worldwide, the majority of people (and most other mammals, for that matter) no longer tolerate dairy products after childhood. For them, consuming milk products causes nausea, bloating and cramping within 2-3 hours. As a result, they will soon learn not to consume dairy products. Those who have the lactase persistence gene, however, don’t have any problems digesting dairy products and, thus, are more likely to consume them (2). Geographical region is important here: while in Northern European countries such as the UK and Finland, 90-100% of people tolerate dairy products, in South-East Asia and Australia this number is close to 0% (3).

A similar situation seems to occur for genes coding for certain taste receptors on the tongue. The TAS2R38 gene, for instance, makes some people extremely sensitive to bitter taste. This, of course, will cause them to avoid bitter foods such as cruciferous vegetables (4). A recent study has even identified a small number of genes that together cause people to either love or hate marmite (5)! Another gene variant (CYP1A1), coding for caffeine clearance from the body, causes carriers to drink less or more coffee and tea (6).

Thus, when food sensitivities are involved, food choices can be driven by specific genes. Most food choices, however, have very little to do with food sensitivities and are much more complex. Pizza Margarita or Pizza Funghi? Triple-chocolate ice cream today or maybe tomorrow? While for such complex food choices there is no single gene responsible, our genetic make-up still does have influence. Typically, for complex behaviours, many different genes can be identified. While each gene individually contributes only a little bit, together they can actually have quite an effect on your food choices. For instance, a recent study identified seven genetic variants each having a small effect on carbohydrate intake. Taken together, genes explained 8% of the variation in carbohydrate intake between individuals (7).

In conclusion: while some genetic variants have rather drastic effects on our food choices, by giving us a physical adverse reaction to certain foods, there are only few of them. Most of our food choices are much more complex. These are influenced by multiple genes at the same time, and even together these genes have only limited influence.

REFERENCES
1. Wansink, B., & Sobal, J. (2007). Mindless eating: The 200 daily food decisions we overlook. Environment and Behavior, 39(1), 106-123. doi: 10.1177/0013916506295573

2. Szilagyi, A. (2015). Adaptation to Lactose in Lactase Non Persistent People: Effects on Intolerance and the Relationship between Dairy Food Consumption and Evolution of Diseases. Nutrients, 7(8):6751-79. doi: 10.3390/nu7085309

3. Itan, Y., Jones, B.L., Ingram, C.J.E., Swallow, D.M. & Thomas, M.G. (2010). A worldwide correlation of lactase persistence phenotype and genotypes. BMC Evol Biol, 10:36. doi: 10.1186/1471-2148-10-36

4. Feeney, E., O’Brien, S., Scannell, A., Markey, A. & Gibney, E.R. (2011). Genetic variation in taste perception: does it have a role in healthy eating? Proc Nutr Soc, 70(1):135-43. doi: 10.1017/S0029665110003976.

5. Roos, T.R., Kulemin, N.A., Ahmetov, I.I., Lasarow, A. & Grimaldi, K. (2017). Genome-Wide Association Studies Identify 15 Genetic Markers Associated with Marmite Taste Preference. BioRxiv (preprint). doi: 10.1101/185629

6. Josse, A.R., Da Costa, L.A., Campos, H. & El-Sohemy, A. (2012). Associations between polymorphisms in the AHR and CYP1A1-CYP1A2 gene regions and habitual caffeine consumption. Am J Clin Nutr, 96(3):665-71. doi: 10.3945/ajcn.112.038794.

7. Meddens, S.F.W., de Vlaming, R., Bowers, P., Burik, C.A.P., Karlsson Linnér, R., Lee, C., et al. (2018). Genomic analysis of diet composition finds novel loci and associations with health and lifestyle. BioRxiv (preprint). doi: 10.1101/383406

Please share and like us:
error

The human gut is colonized by microorganisms in a similar number as the cells of the human body.

“Microbiota” refers to these microorganisms, and it maintains a symbiotic relationship with the host, contributing to essential functions such as food digestion, energy harvest and storage, the function of the intestinal barrier, and the immune system and protection against pathogenic organisms. Prenatal and postnatal factors can alter the composition of the microbiota, such as stress and diet or the use of antibiotics (see image).

Prenatal and Postnatal factors influence gut-brain axis and mental healthFor instance, stress during pregnancy can alter the composition of vaginal microbiota, which affects the composition of the microbiota of the newborn and is related to gastrointestinal (GI) symptoms and allergic reactions. Interestingly, there is a bidirectional communication between the GI tract and the central nervous system (the gut-brain axis) that involves neuronal and metabolic pathways, immune and endocrine mechanisms. Changes in the composition of the microbiota can lead to altered development of the brain and increased risk of psychiatric and neurodevelopmental disorders, such as anxiety, depression and autism (see image).

Depression is one of the most recurrent stress-related disorders that highly impacts the quality of life. Fecal samples of patients with depression have a decreased microbial richness and diversity than controls. The use of probiotics have been shown to help with sad mood and negative thoughts, which may be a potential preventive strategy for depression.

Autism is characterized by impaired communication, poor social engagement and repetitive behaviours, with frequent GI symptoms. We know that the bacteria composition is more diverse in autistic individuals than in unaffected subjects.

For other psychiatric disorders, such as Attention deficit/hyperactivity disorder (ADHD) and Schizophrenia, there is indirect evidence for a role of the microbiota, but more studies are needed.

This connection between the gut and brain is two way communication, and is known as “The Gut-Brain Axis.”

Our knowledge of the impact of gut microbiota on brain function is growing fast, which may pave the way to possible applications for the treatment of psychiatric and neurodevelopmental disorders.

Authors Judit Cabana, Bru Cormand, and Noelia Fernandez Castillo are in the Department of Genetics, Microbiology & Statistics, University of Barcelona, Catalonia, Spain

More information can be found in: Felice VD, O’Mahony SM. The microbiome and disorders of the central nervous system. (2017) Pharmacol Biochem Behav. Sep;160:1-13.
https://www.ncbi.nlm.nih.gov/pubmed/28666895

Please share and like us:
error


Welcome to New Brain Nutrition. You can enjoy FREE Online Courses when you Log In or Join here.

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 728018

New Brain Nutrition is a project and brand of Eat2BeNice, a consortium of 18 European University Hospitals throughout the continent.

Partners:
You may log in here to our Intranet website with your authorized user name and password.