Neurodevelopmental disorders such as attention deficit disorder (ADHD), autism spectrum disorder (ASS) and different types of anxiety disorders are associated with a higher risk of poor dietary, physical activity and sleep habits. Shaping behavior in children with neurodevelopmental symptoms can be challenging. How do parents experience shaping healthy habits in these children? What are tips and tricks to encourage your child to live healthy? We took together the results of a recent study conducted in Boston and our own results from a qualitative interview with parents of children that followed the TRACE-diet to help you encourage your child to be healthy.

What is hard?
For parents of children with a neurodevelopmental disorder (ND) it can be challenging to convince their children to make healthy choices. Some parents explain that taking an unhealthy option from a neurotypical child might also lead to an anger meltdown, but this meltdown is not comparable with a ND meltdown, which can last the whole day. Furthermore, children with ND can be more impulsive, which makes it harder for them to think before they choose. Other children with ND are resistant to change, and/or lack intrinsic motivation to change. The parents that tried taking their child to a health professional, reported a lack of clinical expertise among lifestyle experts to level with children with a neurodevelopmental disorder.

What is helpful?
Agency
Both studies found that allowing your kid agency in making choices is critical to create a healthy habit. It is important to limit the choices, otherwise your child will drown in options. Offer, for instance, a healthy snack and an unhealthy snack and let your child decide whether he/she wants the healthy snack now, or later.

Family engagement
Work as a team! This was a helpful strategy that was reported by most parents in the TRACE study. If you follow the diet with the whole family, the child does not feel left out or punished. Also, just not having snacks at home prevents your child from sneaking into the cabinet and taking one.

Positive reinforcement
It is important to define a goal together with your child. What are we working for? And for how long? You can help your child visualize this goal by making a calendar. Will your child only be rewarded at the end of the goal? Or are there also smaller sub-goals? For some children, a long-term goal such as “sleeping better” or “less belly pains” will be rewarding enough, but other children might need short-term goals.

The role of pets
In the Boston study, almost one-third of the parents reported that they used the role of pets to promote healthy habits. Animals can be used as a positive reinforcement for good choices, but they can also help to maintain healthy routines such as physical activity (walking the dog) and family engagement (walking the dog with the whole family).

 

REFERENCES

  1. Bowling, A. Blaine, R.E., Kaur, R., Davison, K.R. (2019). Shaping healthy habits in children with neurodevelopmental and mental health disorders: parent perceptions of barriers, facilitators and promising strategies. International Journal of Behavioral Nutrition and Physical Activity. 16:52.
  2. TRACE-study. For more information visit project-trace.nl
Please share and like us:
error

Behavior results from the complex interplay between genes and environment. Our genes predispose us to how we act and feel, by influencing how our brain develops and functions. This way, certain genetic variants in our genome increase the risk of developing mental health problems (while others may decrease this risk). Whether someone actually develops a mental health disorder or not, depends on many other factors in our environment, such as stressors and experiences. Nonetheless, studying these genetic risk factors for mental health conditions is an important aspect of understanding these disorders.

As an example of such research, we have now identified several genetic risk factors that contribute to cocaine dependence. For this we combined genetic data from a lot of studies, including more than 6000 individuals. What’s even more interesting is that we found that the genetic variants that are related to cocaine dependence are correlated with the genetic risk factors for other conditions such as ADHD, schizophrenia and major depression. What this means is that certain small variations in DNA increase the risk for not just cocaine dependence, but actually several psychiatric conditions. Probably, there is a common biological mechanism that underlies all these conditions. Thanks to our genetic research, we are now only a small step closer towards unraveling these mechanisms.

We also wrote a blog post explaining our research findings. You can read it here: https://mind-the-gap.live/2019/07/04/cocaine-dependence-is-in-part-genetic-and-it-shares-genetic-risk-factors-with-other-psychiatric-conditions-and-personality-traits/

The original publication can be found here: https://www.sciencedirect.com/science/article/pii/S0278584619301101?via%3Dihub

Please share and like us:
error

In our Eat2BeNice project, we want to know how lifestyle-factors, and nutrition contribute to impulsive, compulsive, and externalizing behaviours. The best way to investigate this is to follow lifestyle and health changes in individuals for a longer period of time. This is called a prospective cohort study, as it allows us to investigate whether lifestyle and nutrition events at one point in time are associated with health effects at a later point.

Luckily we can make use of the LifeGene project for this. LifeGene is a unique project that aims to advance the knowledge about how genes, environments, and lifestyle-factors affect our health. Starting from September 2009, individuals aged 18 to 45 years, were randomly sampled from the Swedish general population. Participants were invited to include their families (partner and children). All study participants will be prompted annually to respond to an update web-based questionnaire on changes in household composition, symptoms, injuries and pregnancy.

The LifeGene project (1) consists of two parts: First, a comprehensive web-based questionnaire to collect information about the physical, mental and social well-being of the study participants. Nine themes are provided for adults: Lifestyle (including detailed dietary intake and nutrition information), Self-care, Woman’s health, Living habits, Healthy history, Asthma and allergy, Injuries, Mental health and Sociodemographic. The partners and children receive questions about two to four of these themes. For children below the age of 15 the parents are requested to answer the questions for them.

The second part is a health test: at the test centres, the study participants are examined for weight, height, waist, hip and chest circumference, heart rate and blood pressure, along with hearing. Blood and urine samples are also taken at the test centres for analysis and bio-banking.

Up until 2019, LifeGene contains information from a total of 52,107 participants. Blood, serum and urine from more than 29,500 participants are stored in Karolinska Institute (KI) biobank. From these we can analyze genetic data and biomarkers for diabetes, heart disease, kidney disease and other somatic diseases. Based on LifeGene, we aim to identify nutritional and lifestyle components that have the most harmful or protective effects on impulsive, compulsive, and externalizing behaviors across the lifespan, and further examine whether nutritional factors are important mediators to link impulsivity, compulsivity and metabolic diseases(e.g. obesity, diabetes). We will update you on our results in the near future.

For more information, please go to the LifeGene homepage www.lifegene.se. LifeGene is an open-access resource for many national and international researchers and a platform for a myriad of biomedical research projects. Several research projects are underway at LifeGene https://lifegene.se/for-scientists/ongoing-research/.

This was co-authored by Henrik Larsson, professor in the School of Medical Science, Örebro University and Department of Medical Epidemiology and Biostatistics, Karolinska Institute, Sweden.

AUTHORS:
Lin Li, MSc, PhD student in the School of Medical Science, Örebro University, Sweden.

Henrik Larsson, PhD, professor in the School of Medical Science, Örebro University and Department of Medical Epidemiology and Biostatistics, Karolinska Institute, Sweden.

REFERENCES:

  1. Almqvist C, Adami HO, Franks PW, Groop L, Ingelsson E, Kere J, et al. LifeGene–a large prospective population-based study of global relevance. Eur J Epidemiol. 2011;26(1):67-77.
Please share and like us:
error

How many total food-and beverage-related decisions do you make in one day? Have a guess!

You reckon more than 15 decisions per day?! Congratulations! You are closer than the average (14.4) of 139 participants who were asked exactly the same question in a study by Wansink and Sobal (2007). However, you might still be far off. Let’s have a closer look at the study.

Being aware of the impact nutrition has on our physical and mental health as well as brain functioning, you might expect people to make well-considered food decisions. Wansink and Sobal (2007) aimed to answer the two following questions:

Are we aware of how many food-related decisions we make?

The results are clear, indicating a large degree of unawareness regarding the number of daily food decisions. The participants underestimated the number of food-and beverage-related decisions in a day by more than 200 decisions. We make an estimated 226.7 food decisions each day. Were you close? The authors conclude that we often engage in mindless eating which results in a lack of control of our food intake. There is a need to increase the awareness of the decisions we make regarding what, when and how much we eat to promote a healthy lifestyle.

These findings raise the question which factors determine our food decisions if we don’t. One potential factor that should be considered is our environment which was addressed in the second question of the study.

Food Choices cartoonAre we aware of the environmental cues that lead us to overeat?

To shed light on the second question the authors analysed data from four studies in which participants were either assigned to the control condition or a so-called exaggerated treatment condition. Environmental factors such as package size, serving bowl and plate size differed for the two conditions. In each study participants in the treatment condition served/prepared/consumed more food than the control group (between 29 and 53 % more). Afterwards the 192 participants of the treatment group were asked “How much did you eat compared to what is typical for you?” Across all four studies 19 % said “less” and 73 % “about the same” as normally. Just 8 % were aware that they consumed more. Afterwards they were informed about the environmental cues and asked a second question: “In this study, you were in a group that was given [a larger bowl]. Those people in your group ate an average of 20%-50% more than those who were instead given [a smaller bowl]. Why do you think you might have eaten more?” Interestingly, 21 % still claimed they did not eat more. 69 % justified the greater food intake with being hungry and 6 % with other reasons. Just 4 % admitted that the environmental cues influenced them.

These findings highlight the unawareness or denial of the influence our environment has on us and our food intake. However, they can be used as a starting point to improve our nutrition. Changing your immediate environment to make it less conducive to overeating can help you improve your health. Start with putting the sweets just a bit further away from you.

Further information on how to make your environment less conducive to overeating you can find in the book “Slim by Design: Mindless Eating Solutions for Everyday Life” by Brian Wansink (https://www.slimbydesign.com/book)

You can also visit Brian Wansink’s website where you find more cartoons – like the one above -amongst other things: http://mindlesseating.org/index.php

Wansink, B., & Sobal, J. (2007). Mindless eating: The 200 daily food decisions we overlook.

Environment and Behavior, 39(1), 106-123.

http://journals.sagepub.com/doi/abs/10.1177/0013916506295573

 

Please share and like us:
error


Welcome to New Brain Nutrition. You can enjoy FREE Online Courses when you Log In or Join here.

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 728018

New Brain Nutrition is a project and brand of Eat2BeNice, a consortium of 18 European University Hospitals throughout the continent.

Partners:
You may log in here to our Intranet website with your authorized user name and password.