A healthy diet has numerous benefits. But what does a healthy diet consist of? And how do we, researchers, measure diet quality?

What’s considered a healthy diet in one country or culture, may not be regarded as such in another. For instance, low-fat and unsweetened dairy products are regarded as healthy in my country, the Netherlands, but not in many Asian countries where a vast proportion of the population is lactose intolerant. Differences in regional availability of foods further determine dietary habits across, and even within, countries. Fish, for example, is often at the core of a healthy diet in countries surrounded by water such as Japan (48.6 kg/year per person), but not in landlocked countries such as Hungary (5.1 kg/year per person) [1].

Here I will describe six common ways in which researchers may assess diet quality in Western populations.

1. Fruit and Vegetable Consumption

Probably the quickest way to obtain an estimate of an individual’s diet quality is by assessing fruit and vegetable consumption of the individual. Generally speaking, fruits and vegetables are high in healthy nutrients such as vitamins and fibers. Moreover, fruits and vegetables often replace unhealthier options such as energy-dense snacks. Finally, while fruit and vegetable consumption is only one aspect of diet quality, it has been shown to correlate with overall diet quality. Thus, fruit and vegetable consumption can be seen as a fast but crude way to assess diet quality.

2. Total Energy Intake

One could consider calculating total energy intake as an indicator of diet quality. Generally speaking, unhealthy foods are more energy-dense than healthy foods. Therefore, high-calorie diets likely contain more unhealthy foods. Of course, this is not necessarily the case; some foods, for instance avocado, are both energy-dense and nutrient-rich. Moreover, low energy intake may result in nutritional deficits. Therefore, total energy intake is not generally used as an indicator of diet quality.

3. Mediterranean Diet Score

The Mediterranean Diet Score (MDS) measures compliance to a Mediterranean-type diet, consisting of legumes, fruits, vegetables, unrefined cereals, olive oil and fish. Points are subtracted for dairy and meat [2]. The Mediterranean diet was inspired by the eating habits of Greece and Italy, where people seem to live longer and have lower risk of heart disease compared to other Western regions.

4. Western-Type Diet Score

A Western-style diet is a modern dietary pattern, that is sometimes referred to as the Standard American Diet. A Western diet consists of red and processed meats, pre-packaged foods, fried foods, whole-fat dairy products, refined grains, potatoes and sugar-sweetened beverages, among others [3]. Contrary to most diet quality scores, a higher Western diet score indicates a less healthy diet.

5. Healthy Eating Index

The Healthy Eating Index (HEI) measures how well an individual adheres to the key recommendations of the 2015 Dietary Guidelines for Americans. These guidelines are often used by US-based nutrition and health professionals, to help people to consume a healthful and nutritionally adequate diet. A total score is calculated based on nine advised food groups/components (including fruits and vegetables, whole grains, plant proteins), and four components that should be moderated (including salt and saturated fat) [4].

6. Dietary Approaches to Stop Hypertension

The dietary approaches to stop hypertension (DASH) dietary pattern emphasizes fruits, vegetables, low-fat dairy, whole grains, nuts and legumes, and limits saturated fat, cholesterol, red and processed meats, added sugars, and sugar-sweetened beverages. It was originally developed in the US to treat hypertension without medication [5]. Several medical associations and institutions have since incorporated the diet in their clinical guidelines [6]. 

REFERENCES:

[1] Ritchie & Roser (2019). Meat and Seafood Production & Consumption. Published online at OurWorldInData.org. Retrieved from: https://ourworldindata.org/meat-and-seafood-production-consumption on 28 August 2019

[2] Dinu, Pagliai, Casini & Sofi (2018). Mediterranean diet and multiple health outcomes: an umbrella review of observational studies and randomised trials. European Journal of Clinical Nutrition, 72(1), 30-43. doi: 10.1038/ejcn.2017.58

[3] Cordain, Eaton, Sebastian, Mann, Lindeberg, Watkins et al. (2005). Origins and evolution of the Western diet: health implications for the 21st century. American Journal of Clinical Nutrition, 81(2), 341-354. doi: 10.1093/ajcn.81.2.341

[4] US Department of Agriculture, Food and Nutrition Service. Retrieved from https://www.fns.usda.gov/resource/healthy-eating-index-hei on 28 August 2019

[5] Sacks, Svetkey, Vollmer, Appel, Bray, Harsha et al. (2001). Effects on blood pressure of reduced dietary sodium and the Dietary Approaches to Stop Hypertension (DASH) diet. DASH-Sodium Collaborative Research Group. The New England Journal of Medicine, 344(1), 3-10. doi: 10.1056/NEJM200101043440101

[6] Chiavaroli, Viguiliouk, Nishi, Mejia, Rahelic, Kahleova et al. (2019). DASH Dietary pattern and cardiometabolic outcomes: an umbrella review of systematic reviews and meta-analyses. Nutrients, 11(2), 338. doi: 10.3390/nu11020338

Please share and like us:
error

Recently I had a great chance to participate in the 19th WPA World Congress of Psychiatry which took place in Lisbon 21-24 of August 2019. Such an international scientific event summarizes recent findings and sets a trend for future research.

The effect of lifestyle on mental health was one of the topics discussed at the conference. Focusing on nutritional impact in psychiatry I will review here some of the studies – research done in animal models or patients and literature reviews – which were presented at the Congress.

All the poster presentations can be viewed on the conference website https://2019.wcp-congress.com/.

Dietary patterns and mental health

  1. Sanchez-Villegas and colleagues from Spain1 presented research on the Mediterranean diet’s effects in patients recovered from depressive disorders. They found that adherence to Mediterranean diet supplemented with extra-virgin olive oil led to the improvement of depressive symptoms. This new study supports previous reports about positive effects of traditional dietary patterns compared to so-called “Western diet”, and this topic was nicely reviewed in the poster presentation of M. Jesus and colleagues (Portugal)2.

I presented a poster3 on a study done in a mouse model of Western diet feeding. We found that genetic deficiency of serotonin transporter exacerbates metabolic alterations and such behavioural consequences of the Western diet as depressive-like behaviour and cognitive impairment. In human, carriers of a genetic variant that reduces serotonin transporter expression are known to be more susceptible to emotionality-related disorders and prone to obesity and diabetes.

Vitamin D and Mental Health

Nutritional psychiatry was traditionally focused on the effects of vitamins and micronutrients on mental health. Several presentations at this conference were dedicated to the role of vitamin D in mental disorders.

Scientists from Egypt (T. Okasha and colleagues)4 showed their results on the correlation between serum level of vitamin D and two psychiatric disorders: schizophrenia and depression. They found lower serum vitamin D levels in the patients with schizophrenia or depression compared to healthy volunteers. These findings indicate a role of vitamin D in the development of psychiatric disorders.

However, the team from Denmark (J. Hansen and colleagues)5 did not find any effect of 3 months vitamin D supplementation on depression symptoms in patients with major depression. The contrariety of the studies on vitamin D benefits in mental health was presented on the review poster by R. Avelar and colleagues (Portugal)6.

Microbiome and Mental Health

There is increasing evidence that microbiota-gut-brain axis influences behaviour and mental health. N. Watanabe and colleagues (Japan)7 presented the results of a study on germfree and commensal microbiota-associated mice. They found increased aggression and impaired brain serotonin metabolism in germfree mice.

  1. Dias and colleagues (Portugal)8 performed a literature review on this topic exploring possible effects of microbiome and probiotics in mental disorder development. The most robust evidence was found for the association of microbiome alterations and depression/anxiety. Up to date literature is lacking replicated findings on proving positive effects of probiotics in mental disorders treatment.

Diabetes Type 2 and Mental Disorders

Risk factors for type 2 diabetes include diet and lifestyle habits. It is getting more obvious that there is an association between type 2 diabetes and the development of mental disorders.

  1. Mhalla and colleagues (Tunisia)9 reported a study done on patients with type 2 diabetes. They found a high prevalence of depression in women with type 2 diabetes. Also, depression in these patients was associated with poorer glycemic control.

Depression is an important factor influencing insomnia. H.C. Kim (Republic of Korea)10 found insomnia in one-third of patients with diabetes type 2.

The group from Romania (A. Ciobanu and colleagues)11 created a meta-analysis of the medical literature showing an association of diabetes type 2 with Alzheimer’s disease. They highlighted the role of insulin signaling in cognition and proposed glucose blood level control as a therapeutic approach in Alzheimer’s disease.

 

Thus, a lot of studies were recently done on the role of nutrition in psychiatric disorders development and therapy. However, there is still room for future discoveries!

REFERENCES:
From 19th WPA World Congress of Psychiatry proceedings:

  1. Sanchez-Villegas, B. Cabrera-Suárez, M. Santos Burguete, P. Molero, A. González-Pinto, C. Chiclana, J. Hernández-Fleta. INTERVENTION WITH MEDITERRANEAN DIET IN THE IMPROVEMENT OF DEPRESSIVE SYMPTOMS IN PATIENTS RECOVERED FROM DEPRESSIVE DISORDER. PREDI-DEP TRIAL PRELIMINARY RESULTS;
  2. Jesus, C. Cagigal, T. Silva, V. Martins, C. Silva. DIETARY PATTERNS AND THEIR INFLUENCE IN DEPRESSION;
  3. Veniaminova, A. Gorlova, J. Hebert, D. Radford-Smith, R. Cespuglio, A. Schmitt-Boehrer, K. Lesch, D. Anthony, T. Strekalova. THE ROLE OF GENETIC SEROTONIN TRANSPORTER DEFICIENCY IN CONSEQUENCES OF EXPOSURE TO THE WESTERN DIET: A STUDY IN MICE;
  4. Okasha, W. Sabry, M. Hashim, A. Abdelrahman. VITAMIN D SERUM LEVEL AND ITS CORRELATION WITH MAJOR DEPRESSIVE DISORDER AND SCHIZOPHRENIA;
  5. Hansen, M. Pareek, A. Hvolby, A. Schmedes, T. Toft, E. Dahl, C. Nielsen7, P. Schulz8. VITAMIN D3 SUPPLEMENTATION AND TREATMENT OUTCOMES IN PATIENTS WITH DEPRESSION;
  6. Avelar, D. Guedes, J. Velosa, F. Passos, A. Delgado, A. Corbal Luengo, M. Heitor. VITAMIN D AND MENTAL HEALTH: A BRIEF REVIEW;
  7. Watanabe, K. Mikami, K. Keitaro, F. Akama, Y. Aiba, K. Yamamoto, H. Matsumoto. INFLUENCE OF COMMENSAL MICROBIOTA ON AGGRESSIVE BEHAVIORS;
  8. Dias, I. Figueiredo, F. Ferreira, F. Viegas, C. Cativo, J. Pedro, T. Ferreira, N. Santos, T. Maia. EMOTIONAL GUT: THE RELATION BETWEEN GUT MICROBIOME AND MENTAL HEALTH;
  9. Mhalla, M. Jabeur, H. Mhalla, C. Amrouche, H. Ounaissa, F. Zaafrane3, L. Gaha. DEPRESSION IN ADULTS WITH TYPE 2 DIABETES: PREVALENCE AND ASSOCIATED FACTORS;
  10. Kim. FACTORS RELATED TO INSOMNIA IN TYPE 2 DIABETICS;
  11. A. Ciobanu, L. Catrinescu2, C. Neagu3, I. Dumitru3. THE CONNECTION BETWEEN ALZHEIMER’S DISEASE AND DIABETES

 

Please share and like us:
error

Mens sana in corpore sano – healthy mind and healthy body

Food insecurity – defined as an individual or household lacking access to sufficient, safe, and nutritious food that meets individuals’ dietary needs – has been linked to children’s behavioral, academic, and emotional problems and an increased risk of the development of mental health disorders [1, 2].

In a Canadian study on food insecurity in young children, researchers found that children from food-insecure families were disproportionately likely to experience persistent symptoms of hyperactivity and inattention. These results were still true after controlling for immigrant status, family structure, maternal age at child’s birth, family income, maternal and paternal education, prenatal tobacco exposure, maternal and paternal depression and negative parenting [3].

Accordingly, a systematic review on food insecurity and attention-deficit hyperactivity disorder (ADHD) symptoms in children reported a predictive and inverse relationship between the two, with possible lasting impacts into adulthood. Authors concluded that evidence exists to hypothesize that childhood food insecurity is associated with predisposing or exacerbating ADHD symptoms in children [4].

In 2017 Dr. Raju, President of the Indian Psychiatric Society concluded in a speech on medical nutrition in mental health and disorders that there is growing evidence for a relationship between quality of diet and mental health. According to Raju, the importance of nutrients as important agents for prevention, treatment, or augmentation of treatment for mental disorders has been established. “Empathic interactions and rational nutrition along with specific pharmacological and physical interventions could form an ideal and humane patient-friendly package in psychiatric practice” [5].

Therefore, identifying families in risk of food insecurity and getting children and adolescents the best possible food supply could result in fewer children with ADHD symptoms.

REFERENCES:

  1. Althoff, R.R., M. Ametti, and F. Bertmann, The role of food insecurity in developmental psychopathology. Prev Med, 2016. 92: p. 106-109.
  2. Shankar, P., R. Chung, and D.A. Frank, Association of Food Insecurity with Children’s Behavioral, Emotional, and Academic Outcomes: A Systematic Review. J Dev Behav Pediatr, 2017. 38(2): p. 135-150.
  3. Melchior, M., et al., Food insecurity and children’s mental health: a prospective birth cohort study. PLoS One, 2012. 7(12): p. e52615.
  4. Lu, S., et al., The Relationship between Food Insecurity and Symptoms of Attention-Deficit Hyperactivity Disorder in Children: A Summary of the Literature. Nutrients, 2019. 11(3).
  5. Raju, M., Medical nutrition in mental health and disorders. Indian J Psychiatry, 2017. 59(2): p. 143-148.
Please share and like us:
error

Twin studies have been used for decades to estimate the relative importance of genes and environments for traits, behaviors and disorders. A very large meta-analysis of all twin studies conducted during the past 50 years (almost 3000 publications) revealed that across all studied traits the average reported heritability was 49%, meaning that about 50% of the variation in traits is due to genetic factors (1).

1. Methods and theory of classical twin design

By comparing the differences and similarities between twins, researchers use them as a natural experiment to study whether a trait, phenotype or disease is due to nature (genetic predisposition) or nurture (environmental factors).

In order to get a better understanding of twin studies, one must first understand the two types of twins:

  • Monozygotic (MZ) or identical twins were conceived in a single egg, which split and forms two embryos. Therefore, MZ twins share all their genes (100%), and are definitely the same sex.
  • Dizygotic (DZ) or fraternal twins were developing from a separate egg and each egg is fertilized by its own sperm cell, and therefore sharing on average 50% of their genes. DZ twins could be of the same sex or different sex.

Based on the different degree of genetic and the similar extent of prenatal and later environmental factors sharing between MZ and DZ twins, MZ twin pairs may show a higher similarity on a given trait, as compared with DZ twins, if genes significantly influence that trait. On the other hand, if MZ and DZ twin pairs share a trait to an equal extent, it is likely that the environment influences the trait more than genetic factors.

The similarity for a given trait is estimates via intra-class correlations (ICC), and similarity across different traits by the cross-twin cross-trait correlations (CTCT). Comparison of correlations across MZ and DZ pairs allows for the variance (V) of a given trait to be decomposed into three factors:

  • Genetic factors, including additive genetic factors (A), and dominant genetic factors (D)
  • Shared environmental factors (C), that is events that happen to both twins, affecting them in the same way. For example, the socio-economic status of the family, the general personality and general parenting styles and beliefs of the parents.
  • Non-shared or unique environmental factors (E), that is events happen to one twin but not the other one, or the events affect either twin in a different way. For example, school and classroom environment, also including measurement error.

Under then assumptions of no interaction and no covariance between A, C, D, and E, the total variance of a phenotype (P) can be expressed as:

𝑉𝑎𝑟,𝑃.=𝐴+𝐷+𝐶+𝐸

Narrow sense heritability is defined as the proportion of variance in a trait due to additive genetic effects (A):

,-2.=,𝑉𝑎𝑟(𝐴)-𝑉𝑎𝑟(𝑃).

Broad sense heritability as the proportion of variance due to additive and dominance genetic effects (A+D):

,-2.=,𝑉𝑎𝑟(𝐴+𝐷)-𝑉𝑎𝑟(𝑃).

The classical twin model can be extended to explore bivariate and multivariate traits association, and test for differences between males and females by using sex-limitation models. More information on how to conduct classical and advanced twin model fitting analyses, please refer to (2) and (3).

2. Important advantages of twin studies

  • Estimate the relative importance of genetic factors (i.e., heritability) of one or more traits
  • Help identify shared genetic factors that influence different traits, behaviors and disorders.
  • Explore the causal status of environmental risk factors by controlling for genetic and shared environmental confounding.
  • Offers unique opportunities to study the gene-environmental interplay, including both gene-environmental correlations and gene-environmental interactions.

In summary, the twin study design is considered an important behavioral genetic approach that has been used in many fields, including biology, psychology and sociology. Using a substantial amount of the published twin research (and other genetic informative studies, e.g. sibling comparison, adoption studies), Plomin et al. summarized the top 10 replicated and important findings (4). These findings included:

  • All psychological traits show significant and substantial genetic influence;
  • No traits are 100% heritable, highlighting the importance of environmental factors, and
  • The heritability is caused by many genes of small effect.

Most of these findings or discoveries that could only have been found using genetically sensitive research designs.

In the Eat2BeNice project, we are currently using data from Swedish Twin Register (https://ki.se/en/research/the-swedish-twin-registry) to estimate the heritability of unhealthy eating habits and ADHD symptoms in adults, and also to investigate the relative importance of genetic, shared environmental and non-shared environmental factors for the overlap between adult ADHD symptoms and different dietary habits diets. We will also test specific hypothesis regarding gene-environmental interactions.

Authors:
Lin Li, MSc, PhD student in the School of Medical Science, Örebro University, Sweden.

Henrik Larsson, PhD, professor in the School of Medical Science, Örebro University and Department of Medical Epidemiology and Biostatistics, Karolinska Institute, Sweden.

REFERENCES

  1. Polderman TJ, Benyamin B, de Leeuw CA, Sullivan PF, van Bochoven A, Visscher PM, et al. Meta-analysis of the heritability of human traits based on fifty years of twin studies. Nature genetics. 2015;47(7):702-9.
  2. Neale, M. C. and Meas, H. M. Methodology for genetic studies of twins and families. and the paper Rijsdijk FV & Sham PC. (2002),
  3. Analytic Approaches to Twin Data using Structural Equation Models. Briefings in Bioinformatics, 3 (2), 119 -133.
  4. Plomin, Robert, et al. “Top 10 replicated findings from behavioral genetics.” Perspectives on psychological science11.1 (2016): 3-23.

 

Please share and like us:
error

Neurodevelopmental disorders such as attention deficit disorder (ADHD), autism spectrum disorder (ASS) and different types of anxiety disorders are associated with a higher risk of poor dietary, physical activity and sleep habits. Shaping behavior in children with neurodevelopmental symptoms can be challenging. How do parents experience shaping healthy habits in these children? What are tips and tricks to encourage your child to live healthy? We took together the results of a recent study conducted in Boston and our own results from a qualitative interview with parents of children that followed the TRACE-diet to help you encourage your child to be healthy.

What is hard?
For parents of children with a neurodevelopmental disorder (ND) it can be challenging to convince their children to make healthy choices. Some parents explain that taking an unhealthy option from a neurotypical child might also lead to an anger meltdown, but this meltdown is not comparable with a ND meltdown, which can last the whole day. Furthermore, children with ND can be more impulsive, which makes it harder for them to think before they choose. Other children with ND are resistant to change, and/or lack intrinsic motivation to change. The parents that tried taking their child to a health professional, reported a lack of clinical expertise among lifestyle experts to level with children with a neurodevelopmental disorder.

What is helpful?
Agency
Both studies found that allowing your kid agency in making choices is critical to create a healthy habit. It is important to limit the choices, otherwise your child will drown in options. Offer, for instance, a healthy snack and an unhealthy snack and let your child decide whether he/she wants the healthy snack now, or later.

Family engagement
Work as a team! This was a helpful strategy that was reported by most parents in the TRACE study. If you follow the diet with the whole family, the child does not feel left out or punished. Also, just not having snacks at home prevents your child from sneaking into the cabinet and taking one.

Positive reinforcement
It is important to define a goal together with your child. What are we working for? And for how long? You can help your child visualize this goal by making a calendar. Will your child only be rewarded at the end of the goal? Or are there also smaller sub-goals? For some children, a long-term goal such as “sleeping better” or “less belly pains” will be rewarding enough, but other children might need short-term goals.

The role of pets
In the Boston study, almost one-third of the parents reported that they used the role of pets to promote healthy habits. Animals can be used as a positive reinforcement for good choices, but they can also help to maintain healthy routines such as physical activity (walking the dog) and family engagement (walking the dog with the whole family).

 

REFERENCES

  1. Bowling, A. Blaine, R.E., Kaur, R., Davison, K.R. (2019). Shaping healthy habits in children with neurodevelopmental and mental health disorders: parent perceptions of barriers, facilitators and promising strategies. International Journal of Behavioral Nutrition and Physical Activity. 16:52.
  2. TRACE-study. For more information visit project-trace.nl
Please share and like us:
error

Behavior results from the complex interplay between genes and environment. Our genes predispose us to how we act and feel, by influencing how our brain develops and functions. This way, certain genetic variants in our genome increase the risk of developing mental health problems (while others may decrease this risk). Whether someone actually develops a mental health disorder or not, depends on many other factors in our environment, such as stressors and experiences. Nonetheless, studying these genetic risk factors for mental health conditions is an important aspect of understanding these disorders.

As an example of such research, we have now identified several genetic risk factors that contribute to cocaine dependence. For this we combined genetic data from a lot of studies, including more than 6000 individuals. What’s even more interesting is that we found that the genetic variants that are related to cocaine dependence are correlated with the genetic risk factors for other conditions such as ADHD, schizophrenia and major depression. What this means is that certain small variations in DNA increase the risk for not just cocaine dependence, but actually several psychiatric conditions. Probably, there is a common biological mechanism that underlies all these conditions. Thanks to our genetic research, we are now only a small step closer towards unraveling these mechanisms.

We also wrote a blog post explaining our research findings. You can read it here: https://mind-the-gap.live/2019/07/04/cocaine-dependence-is-in-part-genetic-and-it-shares-genetic-risk-factors-with-other-psychiatric-conditions-and-personality-traits/

The original publication can be found here: https://www.sciencedirect.com/science/article/pii/S0278584619301101?via%3Dihub

Please share and like us:
error

In our Eat2BeNice project, we want to know how lifestyle-factors, and nutrition contribute to impulsive, compulsive, and externalizing behaviours. The best way to investigate this is to follow lifestyle and health changes in individuals for a longer period of time. This is called a prospective cohort study, as it allows us to investigate whether lifestyle and nutrition events at one point in time are associated with health effects at a later point.

Luckily we can make use of the LifeGene project for this. LifeGene is a unique project that aims to advance the knowledge about how genes, environments, and lifestyle-factors affect our health. Starting from September 2009, individuals aged 18 to 45 years, were randomly sampled from the Swedish general population. Participants were invited to include their families (partner and children). All study participants will be prompted annually to respond to an update web-based questionnaire on changes in household composition, symptoms, injuries and pregnancy.

The LifeGene project (1) consists of two parts: First, a comprehensive web-based questionnaire to collect information about the physical, mental and social well-being of the study participants. Nine themes are provided for adults: Lifestyle (including detailed dietary intake and nutrition information), Self-care, Woman’s health, Living habits, Healthy history, Asthma and allergy, Injuries, Mental health and Sociodemographic. The partners and children receive questions about two to four of these themes. For children below the age of 15 the parents are requested to answer the questions for them.

The second part is a health test: at the test centres, the study participants are examined for weight, height, waist, hip and chest circumference, heart rate and blood pressure, along with hearing. Blood and urine samples are also taken at the test centres for analysis and bio-banking.

Up until 2019, LifeGene contains information from a total of 52,107 participants. Blood, serum and urine from more than 29,500 participants are stored in Karolinska Institute (KI) biobank. From these we can analyze genetic data and biomarkers for diabetes, heart disease, kidney disease and other somatic diseases. Based on LifeGene, we aim to identify nutritional and lifestyle components that have the most harmful or protective effects on impulsive, compulsive, and externalizing behaviors across the lifespan, and further examine whether nutritional factors are important mediators to link impulsivity, compulsivity and metabolic diseases(e.g. obesity, diabetes). We will update you on our results in the near future.

For more information, please go to the LifeGene homepage www.lifegene.se. LifeGene is an open-access resource for many national and international researchers and a platform for a myriad of biomedical research projects. Several research projects are underway at LifeGene https://lifegene.se/for-scientists/ongoing-research/.

This was co-authored by Henrik Larsson, professor in the School of Medical Science, Örebro University and Department of Medical Epidemiology and Biostatistics, Karolinska Institute, Sweden.

AUTHORS:
Lin Li, MSc, PhD student in the School of Medical Science, Örebro University, Sweden.

Henrik Larsson, PhD, professor in the School of Medical Science, Örebro University and Department of Medical Epidemiology and Biostatistics, Karolinska Institute, Sweden.

REFERENCES:

  1. Almqvist C, Adami HO, Franks PW, Groop L, Ingelsson E, Kere J, et al. LifeGene–a large prospective population-based study of global relevance. Eur J Epidemiol. 2011;26(1):67-77.
Please share and like us:
error

How many total food-and beverage-related decisions do you make in one day? Have a guess!

You reckon more than 15 decisions per day?! Congratulations! You are closer than the average (14.4) of 139 participants who were asked exactly the same question in a study by Wansink and Sobal (2007). However, you might still be far off. Let’s have a closer look at the study.

Being aware of the impact nutrition has on our physical and mental health as well as brain functioning, you might expect people to make well-considered food decisions. Wansink and Sobal (2007) aimed to answer the two following questions:

Are we aware of how many food-related decisions we make?

The results are clear, indicating a large degree of unawareness regarding the number of daily food decisions. The participants underestimated the number of food-and beverage-related decisions in a day by more than 200 decisions. We make an estimated 226.7 food decisions each day. Were you close? The authors conclude that we often engage in mindless eating which results in a lack of control of our food intake. There is a need to increase the awareness of the decisions we make regarding what, when and how much we eat to promote a healthy lifestyle.

These findings raise the question which factors determine our food decisions if we don’t. One potential factor that should be considered is our environment which was addressed in the second question of the study.

Food Choices cartoonAre we aware of the environmental cues that lead us to overeat?

To shed light on the second question the authors analysed data from four studies in which participants were either assigned to the control condition or a so-called exaggerated treatment condition. Environmental factors such as package size, serving bowl and plate size differed for the two conditions. In each study participants in the treatment condition served/prepared/consumed more food than the control group (between 29 and 53 % more). Afterwards the 192 participants of the treatment group were asked “How much did you eat compared to what is typical for you?” Across all four studies 19 % said “less” and 73 % “about the same” as normally. Just 8 % were aware that they consumed more. Afterwards they were informed about the environmental cues and asked a second question: “In this study, you were in a group that was given [a larger bowl]. Those people in your group ate an average of 20%-50% more than those who were instead given [a smaller bowl]. Why do you think you might have eaten more?” Interestingly, 21 % still claimed they did not eat more. 69 % justified the greater food intake with being hungry and 6 % with other reasons. Just 4 % admitted that the environmental cues influenced them.

These findings highlight the unawareness or denial of the influence our environment has on us and our food intake. However, they can be used as a starting point to improve our nutrition. Changing your immediate environment to make it less conducive to overeating can help you improve your health. Start with putting the sweets just a bit further away from you.

Further information on how to make your environment less conducive to overeating you can find in the book “Slim by Design: Mindless Eating Solutions for Everyday Life” by Brian Wansink (https://www.slimbydesign.com/book)

You can also visit Brian Wansink’s website where you find more cartoons – like the one above -amongst other things: http://mindlesseating.org/index.php

Wansink, B., & Sobal, J. (2007). Mindless eating: The 200 daily food decisions we overlook.

Environment and Behavior, 39(1), 106-123.

http://journals.sagepub.com/doi/abs/10.1177/0013916506295573

 

Please share and like us:
error


Welcome to New Brain Nutrition. You can enjoy FREE Online Courses when you Log In or Join here.

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 728018

New Brain Nutrition is a project and brand of Eat2BeNice, a consortium of 18 European University Hospitals throughout the continent.

Partners:
You may log in here to our Intranet website with your authorized user name and password.