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Context 

The current deliverable was aimed at investigating the link between diet, the brain and 
impulsivity/compulsivity using animal models, specifically several mouse models of ADHD behaviour. 
Although our efforts of using the BALB/cJ and BTBR were unsuccessful, mainly for due to the PI in 
charge of the breeding programme leaving the consortium, we aimed to address the underlying 
questions of this deliverable in another way. In fact, we managed to ‘create’ a new mouse model for 
ADHD using a microbiome intervention instead of a genetic one.  

As described in detail in the manuscript below, we started with healthy, normal mice which received 
a microbiome transplant from human subjects with ADHD. These mice were subsequently 
demonstrated to develop both behavioral and neurobiological alterations that are associated with 
ADHD like symptoms in mice.  

In short, for this deliverable we provide, for the first time, evidence that the microbiome has a direct 
causal effect on impulsivity related behavior in a mouse model, which strongly supports our other 
human-based studies reported on in work package 6.  
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Gut microbiota from persons with
attention-deficit/hyperactivity disorder
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Abstract

Background: The impact of the gut microbiota on host physiology and behavior has been relatively well
established. Whether changes in microbial composition affect brain structure and function is largely elusive,
however. This is important as altered brain structure and function have been implicated in various
neurodevelopmental disorders, like attention-deficit/hyperactivity disorder (ADHD). We hypothesized that gut
microbiota of persons with and without ADHD, when transplanted into mice, would differentially modify brain
function and/or structure. We investigated this by colonizing young, male, germ-free C57BL/6JOlaHsd mice with
microbiota from individuals with and without ADHD. We generated and analyzed microbiome data, assessed brain
structure and function by magnetic resonance imaging (MRI), and studied mouse behavior in a behavioral test
battery.

Results: Principal coordinate analysis showed a clear separation of fecal microbiota of mice colonized with ADHD
and control microbiota. With diffusion tensor imaging, we observed a decreased structural integrity of both white
and gray matter regions (i.e., internal capsule, hippocampus) in mice that were colonized with ADHD microbiota.
We also found significant correlations between white matter integrity and the differentially expressed microbiota.
Mice colonized with ADHD microbiota additionally showed decreased resting-state functional MRI-based
connectivity between right motor and right visual cortices. These regions, as well as the hippocampus and internal
capsule, have previously been reported to be altered in several neurodevelopmental disorders. Furthermore, we
also show that mice colonized with ADHD microbiota were more anxious in the open-field test.

Conclusions: Taken together, we demonstrate that altered microbial composition could be a driver of altered brain
structure and function and concomitant changes in the animals’ behavior. These findings may help to understand
the mechanisms through which the gut microbiota contributes to the pathobiology of neurodevelopmental
disorders.
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Background
The gut-brain axis (GBA) is a well-recognized bidirec-
tional communication route between gut and brain [1].
One of the key modifiers of the GBA is the intestinal
commensal bacteria in the gut, also known as the micro-
biota. The intestinal microbiota is a complex ecosystem
that comprises more than 1000 different species [2],
which can be influenced by numerous factors, including
diet, antibiotic usage, lifestyle, and host genetics [3, 4].
The role of gut microbiota in host physiology and

health has been well established [5]. An increasing body
of literature recognizes the influence of the microbiota
on neurodevelopment and brain function as well [6, 7].
Studies in animal models have reported an essential role
for the microbiota in fundamental neural processes such
as neurogenesis, myelination, and microglia activation
[8]. In germ-free (GF) animals, affected hippocampal vol-
ume and neurogenesis are observed, in addition to hyper-
myelination of axons in the prefrontal cortex [9–17].
Moreover, modulation of the gut microbiota via diet in-
duces diet-dependent global changes in white matter
structural integrity in rat models [18]. Perturbations in
microbial composition have also been associated with dif-
ferences in behavior and cognition [19]. Particularly, early
life disturbances of the microbiota can influence neurode-
velopment, possibly resulting in psychiatric disorders later
in life [20].
An increasing number of studies report possible roles

for the microbiota in anxiety and social behavior [11, 12,
21–23], which have been confirmed by a limited number
of human studies [24–27]. These observations suggest
that the microbiota may play a key role in the develop-
ment or manifestation of many psychiatric disorders
[28]. Several psychiatric disorders, including autism
spectrum disorder (ASD), major depressive disorder
(MDD), and attention-deficit/hyperactivity disorder
(ADHD), are associated with differences in the gut
microbiota [29–31]. Previous research has demonstrated
changes in the gut microbiota of children with ASD
compared to healthy controls, including a higher Firmi-
cutes/Bacteroidetes ratio and a higher relative abundance
of Clostridia species [30, 32], whereas MDD has been as-
sociated with an increased microbiota alpha diversity
[33]. For ADHD, several studies, by us and others, have
identified differences in microbiota composition between
individuals with ADHD and healthy controls [34, 35].
An increase in the genus Bifidobacterium was observed
in individuals with ADHD, associated with a significantly
enhanced predicted biosynthesis potential of the dopa-
mine precursor phenylalanine [34]. Additionally, dietary
interventions in ADHD can be beneficial in subgroups
of children with ADHD [36–39]. Similarly, for ASD, an
improvement in symptoms has been observed after
intervention. Here, antibiotic treatment alleviated

anxiety in children with ASD [40], and treatment with
vancomycin, an antibiotic used to treat infections with
Clostridia, resulted in significant short-term improve-
ment in neurobehavioral symptoms in children with aut-
ism [41]. Following the discontinuation of vancomycin,
the behavioral improvements largely waned.
In the current study, we aimed to investigate the im-

pact of human microbiota from individuals with ADHD
on brain function and/or structure and behavior in mice.
We hypothesized that the gut microbiota of individuals
with ADHD, when transplanted to mice, would modify
brain structure and/or function as well as influence be-
havior, biological domains that are also impaired to vari-
ous degrees in neurodevelopmental disorders in humans.
To test this hypothesis, we colonized young, germ-free
mice with microbiota collected from male individuals
with ADHD (from now on called “miceADHD”) or micro-
biota from age-matched healthy controls (“micecontrol”).
We subsequently performed structural and resting-state
functional magnetic resonance imaging (fMRI) and ana-
lyzed different aspects of behavior in the microbiota-
colonized mice. Extending insights on the impact of
ADHD microbiota on brain phenotypes and behavior
might increase our understanding of disorder etiology
and ultimately open a window of opportunity for the de-
velopment of novel treatment approaches for ADHD by
targeting the microbiota.

Results
A summary of significant results is given in Table 1.

Differences in microbiota composition between miceADHD

and micecontrol

First, we assessed the microbiota composition of feces from
miceADHD and micecontrol. The within-sample diversity (α-di-
versity) showed no significant differences between the
miceADHD and micecontrol (Observed: t17.2 = 1.181, p = .254;
Shannon: t19.4 = − 1.731, p = .099; InvSimpson: t25 = − 1.781,
p = .087; PD: t15.9 = 0.421, p = .680; Fig. 1a). Comparison of
groups in terms of β-diversity showed a significant difference
between miceADHD and micecontrol (PERMANOVA p = .01).
MiceADHD clustered separately from micecontrol in the PCoA
plot, as illustrated in Fig. 1b.
Linear discriminant analysis effect size (LEfSe)

analysis showed that 31 genera differed in relative
abundance between the two experimental groups
(miceADHD vs. micecontrol ; LDA score > 2.0, punadjusted < .05;
Table 1 and Fig. 1c legend). These genera were part of the
phyla Firmicutes (24/31), Bacteroidetes (4/31), Proteobac-
teria (2/31), and Cyanobacteria (1/31) (Fig. 1c, inner circle
labels). In total, 14 genera were enriched in miceADHD,
while 17 other genera were more abundant in micecontrol.
From the genera enriched in miceADHD, 10 belonged to the
family of Lachnospiraceae within the phylum Firmicutes.
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The overall phyla of Proteobacteria and Cyanobacteria were
decreased in relative abundance in miceADHD, and also the
family of Porphyromonadaceae was present in lower
relative abundance. Additionally, from the phylum of
Firmicutes, the Eubacteriaceae, Christensenellaceae, and
Ruminococcaceae families were less abundant in miceADHD

(Fig. 1c, outer circle labels). The only family that was
present in higher relative abundance in the miceADHD,
compared to the micecontrol, was an unknown Clostridiales.

Decreased structural integrity of both white and gray
matter and reduced functional connectivity in miceADHD

Diffusion tensor imaging (DTI) was used to assess gray
and white matter integrity in several brain regions.

Fractional anisotropy (FA) is a summary measure of
microstructural integrity, and a higher FA might reflect
increased white matter integrity. Mean diffusivity (MD)
is an inverse measure of membrane density, and a higher
MD might indicate decreased gray matter integrit y[42].
The MRI data showed that miceADHD had a decreased

FA in the left and right hippocampus (left: F(1,20) = 6.4,
p = .020; right: F(1,20) = 4.5, p = .047). Lowered FA in
miceADHD was also observed in the right internal capsule
(F(1,20) = 9.2, p = .007) and right optic tract (F(1,20) =
4.5, p = .047) (Fig. 2a). Increased MD was detected in
the right hippocampus (F(1,20) = 13.1, p = .002) of
miceADHD. An increased MD was also observed in the
fornix of miceADHD (F(1,20) = 4.6, p = .044) (Fig. 2b).

Table 1 Overview of significant results

Parameter Increase or decrease
in miceADHD

Microbiota Beta diversity ↑

Genus level g_Porphyromonadaceae_uncultured; g_Clostridiales_unknown; Anaerostipes; Coprococcus_2;
Epulopiscium; Fusicatenibacter; Lachnospiraceae_ND3007_group; Roseburia; Eubacterium_
fissicatena_group; Eubacterium_xylanophilum_group Ruminococcus_gauvreauii_group;
Ruminococcus_gnavus_group;
Ruminococcaceae_UCG-004; g_Ruminococcaceae_uncultured

↑

g_Bacteriodales_unknown; Coprobacter; Parabacteroides; g_Gastranaerophilales_unknown;
Catabacter; Eubacterium; Eisenbergiella; Lachnoclostridium; Eubacterium_rectale_group;
Anaerotruncus; Ruminococcaceae_UCG-014; Ruminococcus_1; Eubacterium_
coprostanoligenes_group; Dielma; Holdemania; g_Enterobacteriaceae_unknown; Escherichia-
Shigella

↓

Family level Clostridiales unknown ↑

Porphyromonadaceae; Bacteriodales; Gastranaerophilales_unknown; Christensenellaceae;
Eubacteriaceae; Ruminococcaceae; Enterobacteriaceae

↓

Order level Gastranaerophilales; Enterobacteriales ↓

Class level Melainabacteria; Gammaproteobacteria ↓

Phylum level Proteobacteria; Cyanobacteria ↓

Open field test Center duration ↓

Corner duration ↑

Diffusion
Tensor Imaging

Fractional
anisotropy

Right hippocampus ↓

Left hippocampus ↓

Right internal capsule ↓

Right optic tract ↓

Mean
diffusivity

Right hippocampus ↑

Fornix ↓

Axial
diffusivity

Right auditory cortex ↑

Radial
diffusivity

Right hippocampus ↑

Left hippocampus ↑

Right internal capsule ↑

Corpus callosum ↑

Resting-state
fMRI

Between motor cortex (M1) and visual cortex (V1) ↓

↑, significant increase; ↓, significant decrease
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MiceADHD showed heightened radial diffusivity (RD) in
the corpus callosum (F(1,20) = 4.8, p = .041), left and
right hippocampus (left: F(1,20) = 5.3, p = .032; right:
F(1,20) = 17.0, p = .001), and right internal capsule (F(1,20) =
7.3, p = .014). Finally, we observed an increased axial diffusiv-
ity (AD) in the right auditory cortex (F(1,20) = 4.6, p = .044)
in miceADHD compared to micecontrol.

Because of the observed differences in FA and MD in the
hippocampus, we also assessed hippocampal volumes. How-
ever, we did not find differences in hippocampal volumes
between miceADHD and micecontrol (F(1,23) = 0.07; p = .798).
Functional connectivity (FC) patterns, derived

from resting-state fMRI (rs-fMRI) data, showed
miceADHD to have a decreased FC in the partial

Fig. 1 Microbial analyses. a Comparison of diversity between microbiota samples from miceADHD and micecontrol using alpha diversity measures
Observed OTUs (richness), Shannon Index, InvSimpson Index, and Phylogenetic Diversity. b Principal coordinate analysis (PCoA) plot of weighted
UniFrac distances showing a clear separation in microbial composition between miceADHD and micecontrol. c Circular representation of the
different bacterial genera between miceADHD and micecontrol using LEfSe analysis (LDA score > 2.0, p < .05 unadjusted). Labels in inner circle
represent phyla, and on the outer circle are the labels of the families
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correlation analysis between the right motor cortex
and right visual cortex (F(1,14) = 5.9, p = .030; Fig.
2c, d). We found no effects in the total correlations
(Fig. 2e, f).

Higher anxiety in mice colonized with ADHD microbiota,
but no memory deficits or impulsive behavior in mice
To explore behavioral effects of the human ADHD
microbiota in mice, several behavioral tests were

Fig. 2 Effects of ADHD microbiota on brain structure and function. a Differences in fractional anisotropy between miceADHD and micecontrol in the
right internal capsule (p = 0.0007), right optic tract (p = 0.047), left hippocampus (p = 0.02), and right hippocampus (p = 0.047) were found. b
Differences in mean diffusivity in the fornix (p = 0.044) and right hippocampus (p = 0.002) were found. Resting-state functional connectivity (FC)
based on total (c, d) and partial (e, f) correlation analyses of 12 regions of interest (ROIs) in the mouse brain. Total (c) and partial (e) correlation
matrices of control (left) and ADHD (right) mice. f A decreased al correlation analysis between the right motor cortex and right visual cortex (p =
0.03) was found in miceADHD
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performed. We assessed general locomotor activity and
novel environment exploration with the open field test
(OFT). MiceADHD spent more time in the corners (F(1,
24) = 6.6, p = .017) and less time in the center (F(1,24) =
10.4, p = .004) of the open field arena compared to
micecontrol (Fig. 3a). Groups did not differ in the fre-
quency of entering the corners (F(1,24) = 1.8, p = .190)
or center (F(1,24) = 1.7, p = .211). This suggests that the
altered exploratory behavior in miceADHD reflects increased
anxiety. Analysis of locomotion activity did not reveal any
differences in velocity (F(1,24) = 0.4, p = .527), total dis-
tance traveled (F(1,24) = 0.2, p = .687), or any of the manu-
ally scored behaviors, like jumping, wall leaning, rearing,
and grooming. Additionally, no differences in home cage
activity during day or night were observed between the two
experimental groups (Additional file 1: Figure S1).
During the familiarization phase of the novel object

recognition (NOR) test, used to assess memory, all mice
explored both identical objects equally (F(1,25) = .956,
p = .338; Fig. 3b). MiceADHD demonstrated a trend
toward a lower discrimination index compared to micecontrol

during the test phase of the NOR with a half hour interval

between familiarization and test phase (F(1,25) = 3.8,
p = .063; Fig. 3c), but not when an hour interval be-
tween the familiarization and test phase was used
(F(1,25) = 1.98, p = .171; Additional file 1: Figure S2).
It has been proposed that burying of harmless objects, like

glass marbles, reflects a form of compulsive or impulsive be-
havior [43]. Performing the marble burying test (MBT), we
found no differences between the number of marbles buried
by miceADHD (mean = 1.89; SEM = .91) and by micecontrol

(mean = 1.75; SEM = .61, H(1) = 0.56, p = .453; Additional
file 1: Figure S3).

Changes in microbiota are associated with anxiety and
DTI measures in the hippocampus
We investigated, whether the genera that differed in rela-
tive abundance, described above and depicted in Fig. 1c,
could be correlated to key neurobiological features (i.e.,
anxiety and DTI measures in the hippocampus and in-
ternal capsule). Figure 4 provides an overview of all ob-
served correlations (p < .01).
The relative abundance of Eubacterium showed a posi-

tive correlation with the FA of the right and left

Fig. 3 Effect of ADHD microbiota on behavior. a Time spent in the center (left), corners (middle), and periphery (right) of the open field.
MiceADHD spent less time in the center (p < 0.004) and more time in the corners (p < .017) of the open field. b During the familiarization phase of
the NOR test micecontrol (green bars) and miceADHD (red bars) explored both identical objects equally. c MiceADHD showed a trend toward a lower
novel object discrimination index (p = 0.063) during the test phase of the NOR
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hippocampus (FA; right: R = .564, p = .006; left: R = .586,
p = .004) and a negative correlation with the MD in the
right hippocampus (MD; R = − .559; p = .007). Gastra-
naerophilales unknown showed a positive correlation with
the FA in the right and left internal capsule (right: R =
.721, p < .001; left: R = .666, p = .001). Finally, we observed
a positive correlation between Holdemania and the FA in
the left hippocampus (R = .563; p = .006).
The relative abundance of Anaerostipes showed a posi-

tive correlation with anxiety (time spent in corners) in the
OFT (R = .546; p = .005) and a negative correlation with
the time spent in the center of the open field (R = − .512;
p = .009). Additionally, the relative abundance of the
uncultured Porphyromonadaceae (R = .555; p = .004),
Roseburia (R = .541; p = .005), and Ruminococcaceae UCG

004 (R = .515; p = .008) showed a positive correlation with
anxiety (time spent in corners) in the OFT. The relative
abundance of Eisenbergiella (R = .543; p = .005), Eubacter-
ium rectale group (R = .626; p = .001), and Ruminococcus
1 (R = .562; p = .003) showed a positive correlation with
time spent in the center in the OFT.

Discussion
Given the current knowledge on the association between
the gut microbiota and neurodevelopmental disorders
via the gut-brain axis [29–31], we hypothesized that the
microbiota of individuals with ADHD, when trans-
planted into young GF mice, would affect brain structure
and/or function as well as behavior. We show that
miceADHD had an impaired structural integrity of both

Fig. 4 Correlations between bacterial genera and key neurobiological findings. Pearson correlations between relative taxa abundance and anxiety
(center duration and corner duration in the open field) or DTI measures FA and MD in the hippocampus and internal capsule. All correlations
presented were statistically significant (p < 0.01) with strong correlations indicated by large circles and weaker correlations by small circles. The
colors denote whether the correlation is negative (red) or positive (blue)
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white and gray matter, and showed decreased functional
connectivity between the right visual cortex and right
motor cortex.
In the current study, we investigated if there were any

structural brain differences in miceADHD compared to
micecontrol using diffusion tensor imaging (DTI). One of
the brain regions selected was the hippocampus. The
hippocampus is highly sensitive to aging, life experiences
such as stress, and environmental factors like malnutri-
tion and altered microbial composition [44–46]. The
hippocampus is important for learning and memory,
mood regulation, and neural plasticity [44]. It is there-
fore not surprising that impaired hippocampal function
has been implicated in many neurodevelopmental and
psychiatric disorders, including ASD, ADHD, and MDD
[16, 47–50]. The DTI data revealed a decreased FA and
increased MD in the right hippocampus, accompanied
by increased RD and unchanged AD in miceADHD. This
is indicative of decreased myelination rather than axonal
damage or degeneration [42]. A decreased FA and in-
creased MD have been reported in children and adults
with ADHD in several brain regions, including the in-
ternal capsule, but not in the hippocampus [51, 52].
However, a smaller hippocampal volume has been re-
ported in ADHD [15, 16].
We also observed white matter alterations in the right

internal capsule. The internal capsule is composed of af-
ferent and efferent myelinated fibers of the cerebral cor-
tex [53]. Abnormalities in the structure of the internal
capsule have been implicated in neurodevelopmental
and psychiatric disorders like schizophrenia, ADHD, and
bipolar disorder [52, 54, 55]. We report decreased FA
and increased RD in miceADHD in the internal capsule,
indicative of decreased myelination in this region. This
finding may be related to the observed decreased func-
tional connectivity between the right primary motor cor-
tex (M1) and the right primary visual cortex (V1) of
miceADHD because the fibers of these regions course
through the internal capsule [56]. Both the primary
motor cortex and visual cortex are part of the visuo-
motor network [57]. Reduced visuomotor adaptation has
also been reported in schizophrenia and in individuals
with ADHD [58, 59].
We used various behavioral tests to investigate diverse

aspects of mouse behavior that might be influenced by
microbiota from individuals with ADHD. One of the
tests that the mice performed was the OFT. In this test,
we observed that miceADHD showed more anxiety than
micecontrol, which was measured as time spent in the
corners of the open field. Although this behavior is not
specific to ADHD, many psychiatric disorders, including
ADHD, MDD, and ASD, are highly comorbid with anx-
iety [60–62]. Altered anxiety-related behavior is often
found after microbiota manipulations, and this behavior

can also be caused by fecal transplantation [19]. This
suggests that components of the gut microbiota are able
to regulate anxiety. We found no differences in motor
activity between groups in either the OFT or in home
cage activity during active and inactive phase of the
mice. Additionally, no apparent effects were seen in the
MBT assessing compulsivity/impulsivity nor in the
memory assessing NOR task.
Previous studies have examined and discovered some

differences in the microbiota composition between indi-
viduals with ADHD and controls [34, 35], although
transplantation of the microbiota of individuals with
ADHD into mice is novel. Therefore we investigated the
microbial composition within and between samples and
on different levels in the current study. The overall mi-
crobial composition, after transplantation, revealed a
clear separation (beta-diversity) between microbiota
from micecontrol and miceADHD (Fig. 1b). We did not ob-
serve, however, any significant differences in the alpha-
diversity indices. Furthermore, in the global microbial
composition, we found a difference in microbial commu-
nity composition, with 31 genera showing different rela-
tive abundance between the animal groups. Most of
these genera (23 of the 31) are also present in our hu-
man donors (ADHD and/or control), though we cannot
be sure about the uncultured or unknown genera (6 out
of 31). This means that our study has a translational
value, especially as the microbial composition of both
the original human samples and the mouse samples
cluster per experimental group (ADHD and control).
One of the genera we found to differ between our

groups was Lachnoclostridium. It appeared to be de-
creased in relative abundance in miceADHD. The relative
abundance of Lachnoclostridium was also found de-
creased in children with ASD [63] and in ADHD pa-
tients compared to controls [34, 35]. Going up to the
phylum level, the differentially abundant genera in our
study belonged predominantly (24 out of 31) to the
phylum Firmicutes, and families Lachnospiraceae and
Ruminococcaceae, which have been associated with
stress and social avoidance behavior [64, 65]. Ten genera
of the Lachnospiraceae family were more abundant in
miceADHD compared to micecontrol; in the latter group,
three other Lachnospiraceae genera were enriched. Gen-
era of the Lachnospiraceae family have been associated
with immune responses and are able to control regula-
tory T cells [66].
Our correlation analysis showed that there was a posi-

tive correlation between white matter integrity and the
relative abundance of Holdemania and Eubacterium.
These bacteria are both known to be changed in abun-
dances in other disorders: Holdemania is increased in
individuals with MDD [67–69], and Eubacterium is de-
creased in children with ASD [70]. However, to our
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knowledge, this is the first study that found significant
correlations between these bacteria and brain structural
and functional changes. Based on our finding, it would
therefore be of interest to investigate this further in the
clinical populations of the mentioned disorders.
Changes in the relative abundance of the family Rumi-

nococcaceae have been observed in multiple psychiatric
and neurodevelopmental diseases including ADHD, ASD,
and MDD [71, 72]. Our results show that three genera,
Anaerostipes, Roseburia (both from the Lachnospiraceae
family), and Ruminococcaceae UGC-004 (Family Rumino-
coccaceae), positively correlated with anxiety levels, while
Eubacterium appeared to be negatively correlated to the
severity of anxiety and positively with anxiety reduction.
Importantly, these genera were also found to be more
abundant in persons with ADHD, compared to controls,
as part of our ongoing study of ADHD patients from the
NeuroIMAGE study [73] (n = 56) and healthy participants
(n = 49) [74].
This work should be considered in the light of its

strengths and limitations. First, we only used six donor
samples (three of individuals with ADHD and three of
controls) in our study. While this low number of sam-
ples may possibly reduce the general distribution of
taxonomic groups observable in adult individuals with
ADHD, the samples used were carefully selected based
only on the disease status (not on behavioral or MRI-
based variables in these individuals). To reduce individ-
ual differences, samples were pooled before colonization
(ADHD patients or controls). Additionally, the choice of
collecting the fecal samples from adult male donors was
based on the fact that the adult form of ADHD is
thought to be the most severe outcome of this disorder
[75] and to avoid sex effects and non-controlled hormo-
nal effects, like the use of contraceptives and the men-
strual cycle. These hormonal effects are likely to play a
role in the shaping of the gut microbial composition,
both in humans and mice [76–79], and therefore only
male mice were colonized. Besides the hormonal effects,
it is possible that unmeasured factors of our donors, e.g.,
body mass index, also influenced the microbial compos-
ition. Though, based on the inclusion criteria of the sub-
jects in the NeuroImage cohort [73], we are confident
that the subjects in this study were physically healthy.
Second, we used germ-free mice, housed in isolators,

as opposed to antibiotic-treated mice. While this ap-
proach limited our behavioral testing options (in terms
of equipment), the sterile isolators used in this study
provided a contamination-free environment at the time
of behavioral testing. Additionally, this allowed us to
make sure that the animals were only exposed to the mi-
croorganisms from the donor samples, and competition
between the native and newly transplanted micro-
organisms in germ-free animals was absent, which allows

for the study of a defined microbial composition [80].
However, germ-free mice show various developmental
and physiological differences when compared to conven-
tionally raised animals. For example, germ-free mice
show decreased anxiety and decreased expression of
genes that are connected to synaptogenesis [12, 81].
Nevertheless, germ-free mice, housed in isolators, still
seem to be the best controlled animal model to study
the impact of microbial transplantation [80]. Moreover,
by including a group of germ-free mice that received the
transplantation from humans without ADHD, a positive
control was present. However, it might be interesting to
add a third group of germ-free mice that is not colo-
nized (negative control or mock) in future studies, to be
able to investigate baseline behavioral (i.e., anxiety) and
brain structural and functional indices.
Third, we analyzed the relative microbial composition

using 16S rRNA sequencing data. This approach is pre-
ferred for comparison across different samples (i.e., dif-
ferent strains of mice), treatments, or timepoints.
Additionally, 16S rRNA sequencing techniques are more
cost-efficient than metagenomics sequencing; it shows
lower signal distortion due to host contamination [82]
and has many well-developed analytical tools available
[83]. Moreover, we (i) used mock communities in the se-
quencing experiment in order to check for the “true”
bacterial distribution (which validated our taxonomic
distribution), (ii) focused on common taxa, and (iii) ap-
plied a stringent QC for the statistical analysis to reduce
the chance of false positives. However, the choice of se-
quencing primers (V1-V2 variable region) includes a bias
in the sensitivity to identify specific bacterial taxa, for ex-
ample, the Bifidobacteria and Faecalibacterium that
were observed to differ between ADHD patients and
controls [34, 35], could not be measured properly in our
samples. Therefore, sequencing the same region of the
16S rRNA gene and the use of similar analysis pipelines
is needed in order to properly compare studies in the
best possible way.

Conclusions
In conclusion, bacterial components of the gut microbiota
of individuals with ADHD are associated with changes in
brain structure and function, as well as behavior in mice. Al-
though we do not suggest that ADHD is caused by changes
in microbial composition, the observed changes at the brain
level, albeit not specific to ADHD, highlight the relevance of
the gut microbiota, potentially through decreased myelin-
ation. While further research is needed, our findings might
increase our understanding of the etiology of psychiatric dis-
orders and ultimately may open a window of opportunity
for the development of potentially novel treatment strategies
targeting the microbiota in neurodevelopmental diseases.
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Methods
Human Participants
Fecal samples were collected from male participants with
ADHD (n = 3) and age-matched healthy male partici-
pants (n = 3), with an average age of 22.7 ± 1.1 years.
The samples were pooled to prevent transplanting indi-
vidual microbial compositions [29] and prepared as de-
scribed (see Additional file 2). The participants were
drawn from the follow-up of the NeuroIMAGE study
(NeuroIMAGE II) [38], in which participants with
ADHD had been diagnosed based on DSM-IV criteria
using the Kiddie Schedule for Affective Disorders and
Schizophrenia for School-Age Children (K-SADS) [39].
The age of the participants at the time of the K-SADS
and feces donation is described in Table 2. Institutional
Review Board approval (registration number 2012/542;
NL nr.: 41950.091.12) was obtained for the study, and all
participants provided written informed consent.

Experimental design
All animal experiments were carried out in accordance
with international European ethical standards (European
Directive 2010/63/EU) and were approved by the Veterin-
ary Authority of the Radboud University Medical Center
(Radboudumc; permit number: RU-DEC 2015-0077) con-
taining a statistical power analysis to minimize group
sizes. All applicable (inter)national and institutional guide-
lines for the care and use of animals were followed and re-
ported in accordance with the ARRIVE guidelines [40].
In total, 28 male, germ-free C57BL/6JOlaHsd mice

with an average age of 38 ± 0.5 days were used for this
randomized and blinded controlled study. The timeline
of the study is illustrated in Fig. 5. Mice were colonized
with microbiota from participants with ADHD
(“miceADHD”) or healthy participants (“micecontrol”) via
oral gavage. Animals were assigned to one of the two
BioFlex™ B30 Flexible Film Isolators (Bell Isolation Sys-
tems, Livingston, UK), in which the animals were group-
housed in standard cages with three or four animals per
cage (see Additional file 1: Figure S4). On 27 days post
colonization (dpc), mice were transported to the Preclin-
ical Imaging Centre (PRIME) in the central animal facil-
ity (CDL) of the Radboud University where the animals
were group-housed and scanned with MRI in a random
order over the following 2 days. Before the scanning, the
mice were housed in Digital Ventilated Cages (Digital

Ventilated Cage, Tecniplast S.P.A., Buguggiate (VA)
Italy) to study 24/7 activity using a capacitive-based sen-
sor placed non-intrusively under the home cage on the
cage rack [41, 42]. To ensure that the gut microbial
composition of the mice remained stable throughout the
experiment, mice were given booster oral inoculations at
14 and 22 dpc with the same prepared microbiota sam-
ples stored at − 80 °C. Fecal pellets were collected weekly
between 9 a.m. and 9:30 a.m., snap-frozen, and stored at
− 80 °C. One mouseADHD and one mousecontrol were eu-
thanized due to complications occurring after the oral
gavage on dpc 15 and 22, respectively. All remaining
mice underwent MR imaging and were sacrificed dir-
ectly afterwards using transcardial perfusion fixation.
Brains were then collected and immunohistochemistry
performed on brain sections (see Additional File 2).

Microbiota methods and measures
Bacterial DNA was extracted using a repeated bead beat-
ing protocol and purified using a customized Maxwell
16 Tissue LEV Total RNA Purification Kit (AS1220; Pro-
mega Corporation, Madison, WI, USA). This kit was
adapted by the company in order to use it for bacterial
DNA extraction (XAS 1220 kit). Amplification of the
specific V1-2 region of the 16S rRNA gene was per-
formed. The PCR product was purified using the High-
Prep™ PCR kit (MagBio Genomics Inc., Gaithersburg,
MD, USA), and libraries with final loading concentra-
tions of 200 ng/μl were prepared for Illumia HiSeqTM se-
quencing (ATC Biotech AG, Konstanz, Germany),
consisting of 46 randomly mixed samples and 2 positive
controls (mock communities). The sequenced data was
run through the NG-Tax 16S rRNA pipeline [43]. Then
as a first control, the composition of the human and
mouse samples was compared and plotted in a PCoA
figure (see Additional file 1: figure S5 and Additional file
2). After this, the human samples were removed from
further analysis to be able to define the specific changes
between the miceADHD and micecontrol. Additionally, due
to the microbiome changes after each (re-)colonization,
a weighted average was calculated for each animal mi-
crobial composition, and quality control was performed
in several steps (see Additional file 2). The cleaned data
were used to measure within- and between-sample bac-
terial community diversity. For the within-sample com-
parison, the following alpha-diversity metrics were used:

Table 2 Characteristics of participants

Variable ADHD Control

Men (%) N = 3 (100%) N = 3 (100%)

Age in years at the time of the K-SADS questionnaire (± SEM) 22.0 (1.2) 18.3 (1.5)

Age in years at the time of the feces donation (± SEM) 23.7 (1.2) 20.3 (1.5)

Medication use (% of participants) Stimulant medication (33.3%) No
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(1) the number of species present, measured using the
observed species richness estimator (R), (2) number of
species present and the equitability of each species
present as measured by the richness and evenness esti-
mators Shannon-Wiener diversity Index (H’; sensitive to
the addition of rare species) and Inverse Simpson diver-
sity index (D2; insensitive to the addition of rare species)
[44], and (3) phylogenetic diversity (PD), which takes
evolutionary distance of the present bacterial species
into account.
Between-sample diversity was measured via the

phylogenetic-based assessment of difference in overall
bacterial community composition (weighted UniFrac).
Linear discriminant analysis effect size (LEfSe) was used
to evaluate differences in taxa between the two experi-
mental groups. Genera that differed significantly were
selected for correlation analysis to link bacterial changes
with behavior and brain parameters.

Magnetic resonance imaging (MRI)
All MRI measurements were performed using an 11.7-T
BioSpec Avance III small animal MR system (Bruker
BioSpin, Ettlingen, Germany). Isoflurane (Abbott Animal
Health, Abbott Park, IL, USA) was used for anesthesia
(induction with 3.5% and maintenance with ~ 1.7% iso-
flurane in a 1:2 oxygen-air mixture). Imaging parameters
can be found in table S1 (Additional file 3: Table S1).
To investigate brain diffusivity, DTI was used as an

imaging biomarker for white and gray matter integrity.
Fractional anisotropy (FA) is a marker of the degree of
myelination and fiber density of white matter (WM),
while mean diffusivity (MD) characterizes an inverse
measure of the membrane density. Axial diffusivity (AD)
and radial diffusivity (RD) describe the parallel and per-
pendicular directions of diffusivity, respectively [45].
These scalars were derived from the tensor estimation as
described (see Additional file 2) [46].
To assess cerebral blood flow (CBF), we acquired MR

perfusion data under resting conditions using standard-
ized protocols as described (see Additional file 2) [47].

We evaluated FC patterns using rs-fMRI as described
(see Additional file 2) [47].
Hippocampus volumes were calculated from the ana-

tomical T2*weighted images of the MRI scans (see Add-
itional file 3: Table S1 for imaging parameters) using
ImageJ (National Institute of Health, Bethesda, MD,
USA) (see Additional file 2).

Behavioral tests
Open field test
Mice were allowed to freely explore the square open
field (40 × 40 × 25 cm) with white Plexiglas walls for 15
min. We followed a protocol that has been previously
described [48].

Marble burying test
The MBT was conducted in a standard-sized cage (37 ×
19 × 13 cm) preloaded with 3-cm unused sterile bedding
and 15 evenly spaced sterilized black glass marbles with
a 14-mm diameter. A protocol previously described was
used [49].

Novel object recognition
This test was performed on dpc 20 (first acquisition day;
30 min delay) and dpc 21 (second acquisition day; 60
min delay) as previously described [47]. Preference for
the novel object was expressed as a discrimination index,
which is defined as the exploration time for the novel
object minus that for the familiar object divided by the
total amount of exploration of both objects.

Statistical analyses
Data were analyzed using the IBM SPSS for Windows
22.0 software (SPSS Inc., Chicago, IL, USA) or R (version
3.2.4). Datasets were analyzed using one-way univariate
analysis of variance (normally distributed) or Kruskal-
Wallis test (not normally distributed) with Bonferroni
post hoc tests, where applicable. Beta-diversity was ana-
lyzed using Permanova-S with 10,000 permutations [50].
LEfSe was calculated using the Galaxy Module online

Fig. 5 Study design. Germ-free mice were colonized with human ADHD or human control microbiota on day 1 of the experiment. Booster
inoculations to recolonize the mice were given on day 14 and 22. Fecal pellets were collected on day 5, 14 (before recolonization), 19, and 26.
The open field test (OFT) was performed on day 12, the marble burying test (MBT) on day 13, and the Novel object recognition test (NOR) on
day 20 (0.5 h interval) and day 21 (1 h interval). The mice underwent MRI on day 28 or 29, after which all brains were processed for
immunohistochemical staining
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(https://huttenhower.sph.harvard.edu/galaxy). The alpha
value for the factorial Kruskal-Wallis test among the
colonization groups was set to 0.05, and the threshold
logarithmic linear discriminant analysis (LDA) score for
discriminant features was 2.0. Pearson’s correlation coef-
ficients between microbial composition and key neuro-
biological findings were calculated (p < .01) and plotted
using the corrplot package in R. Statistical outliers were
removed from the dataset. The number of mice that was
considered an outlier per test is described (see
Additional file 3: Table S2).

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/s40168-020-00816-x.

Additional file 1: Title of data: Supplementary figures. Figure S1.
Home-cage activity during night and day. Figure S2. Novel object recog-
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were used in this study. Figure S5. Beta-diversity analyses including the
human donors.
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