Investigating the shared genetic effects between ADHD and unhealthy dietary intake

110 views
Lin Li
About the Author

Lin Li is a PhD candidate at the School of Medical Science, Örebro University in Grythyttan (Sweden) and works on the long-term influences of ADHD on nutrition and life-style factors.


We have discussed the association between ADHD and obesity in our first blog (newbrainnutrition.com/adhd-and-obesity-does-one-cause-the-other/), briefly summarized, evidence from various study designs suggested that shared etiological factors might contribute to the above association. Recently, a large genome-wide association study (GWAS) on risk genes for ADHD reported a significant genetic correlation between ADHD and higher risk of overweight and obesity, increased BMI, and higher waist-to-hip ratio, which further supported that there could be genetic overlap between obesity and ADHD (1).  


Considering the previously described occurrence of unhealthy dietary intake in children and adolescents with ADHD in our second blog (newbrainnutrition.com/how-does-adhd-relate-to-unhealthy-dietary-habits-the-role-of-food-addiction/), along with the fact that bad eating behaviours are crucial factors for the development of obesity, We can speculate that the shared genetic effects between ADHD and unhealthy dietary intake may also explain the potential bidirectional diet-ADHD associations. Is there any available evidence to support the above hypothesis?

To date, dopaminergic dysfunctions underpinning reward deficiency processing (or neural reward anticipation), was reported as a potential shared biological mechanism, through which the genetic variants could increase both the risk for ADHD and unhealthy dietary intake or obesity. Via the Gut-Brain axis, a two-way and high-speed connection, the gut can talk to the brain directly. According to the study (2), a higher proportion of bacteria that produce a substance that can be converted into dopamine was found in the intestines of people with ADHD than those without ADHD. Using functional magnetic resonance imaging (fMRI), they further found that the participants with more of these bacteria in their intestines displayed less activity in the reward sections of the brain, which constitutes one of the hallmarks of ADHD. We are therefore proposing the idea that there could be a biological pathway- ‘dietary habits-gut (microorganism)-reward system (dopamine)-ADHD’, through which the shared genetic effects between ADHD and unhealthy dietary intake may play a role.

In order to determine whether the genetic overlap between ADHD and dietary habits actually exists, we will in our next Eat2beNice project use twin methodology and unique data from the Swedish Twin Register. We will keep you updated!

This was co-authored by Henrik Larsson, professor in the School of Medical Science, Örebro University and Department of Medical Epidemiology and Biostatistics, Karolinska Institute, Sweden.

1.         Demontis D, Walters RK, Martin J, Mattheisen M, Als TD, Agerbo E, et al. Discovery of the first genome-wide significant risk loci for attention deficit/hyperactivity disorder. Nature genetics. 2019;51(1):63.

2.         Aarts E, Ederveen TH, Naaijen J, Zwiers MP, Boekhorst J, Timmerman HM, et al. Gut microbiome in ADHD and its relation to neural reward anticipation. PLoS One. 2017;12(9):e0183509.