Sex-Specific ADHD-like Behaviour, Altered Metabolic Functions, and Altered EEG Activity in Sialyltransferase ST3GAL5-Deficient Mice

34 views
Tatyana Strekalova

Abstract

A deficiency in GM3-derived gangliosides, resulting from a lack of lactosylceramide-alpha-2,3-sialyltransferase (ST3GAL5), leads to severe neuropathology, including epilepsy and metabolic abnormalities. Disruption of ganglioside production by this enzyme may also have a role in the development of neuropsychiatric disorders. ST3Gal5 knock-out (St3gal5−/−) mice lack a-, b-, and c-series gangliosides, but exhibit no overt neuropathology, possibly owing to the production of compensatory 0-series glycosphingolipids. Here, we sought to investigate the possibility that St3gal5−/− mice might exhibit attention-deficit/hyperactivity disorder (ADHD)-like behaviours. In addition, we evaluated potential metabolic and electroencephalogram (EEG) abnormalities. St3gal5−/− mice were subjected to behavioural testing, glucose tolerance tests, and the levels of expression of brain and peripheral A and B isoforms of the insulin receptor (IR) were measured. We found that St3gal5−/− mice exhibit locomotor hyperactivity, impulsivity, neophobia, and anxiety-like behavior. The genotype also altered blood glucose levels and glucose tolerance. A sex bias was consistently found in relation to body mass and peripheral IR expression. Analysis of the EEG revealed an increase in amplitude in St3gal5−/− mice. Together, St3gal5−/− mice exhibit ADHD-like behaviours, altered metabolic and EEG measures providing a useful platform for better understanding of the contribution of brain gangliosides to ADHD and associated comorbidities.

Public information

Title:

Sex-Specific ADHD-like Behaviour, Altered Metabolic Functions, and Altered EEG Activity in Sialyltransferase ST3GAL5-Deficient Mice

Authors:

Strekalova, T.; Veniaminova, E.; Svirin, E.; Kopeikina, E.; Veremeyko, T.; Yung, A.W.Y.; Proshin, A.; Tan, S.Z.K.; Khairuddin, S.; Lim, L.W.; Lesch, K.-P.; Walitza, S.; Anthony, D.C.; Ponomarev, E.D.

Journal:

Biomolecules

Year:

2021

Url:

https://doi.org/10.3390/biom11121759