The popularity of yoga practice has risen sharply in recent years. In 2006, already 2.6 million people in Germany practiced yoga regularly (1). The arguments for yoga are widely spread in the population, for example the energy and immune function are increased and back pain, arthritis and stress are relieved (2). For others, the practice of yoga is an important factor in doing something good for themselves, while for others the discipline and control of the body is more in focus.

But, where does yoga come from?
The yoga tradition originates from India, the religion of Buddhism, and has a philosophical background with original roots reaching back over 2000 to 5000 years. The term “yoga” comes from the word “yui”, which has its origin in Sanskrit, a very ancient Indian language, and means “unite”. Accordingly, yoga refers to the union of body, mind and soul (3).

What exactly does a yoga practice involve?
In western countries the focus is especially on the Asana practice, the postures. The postures can be lying, sitting or standing and should be performed as attentively as possible. All Asanas have associated Sanskrit names and also pictorial names such as the Cobra (Bhujangasana) or the down looking dog (Adho Mukha Svanasana). Further essential elements are the breathing techniques (Pranayama), where the breath is consciously directed (e.g. Kapalabathi, alternative breathing) and the meditation (Dhyana), where the mind is consciously directed, by calming down, insight can be attained and a state of deep relaxation can be achieved.

But, can yoga really have a positive effect on mental and physical health?
In view of the study and literature available, YES! A meta-analysis results that yoga is effective as a complementary treatment for psychiatric disorders such as schizophrenia, depression, anxiety, and posttraumatic stress disorder (4).

Yoga can have a positive influence on the reduction of depression symptoms, the reduction of stress and anxiety, and can lead to an increase in self-love, awareness and life satisfaction (5, 6). On the physiological level, the results can also be found in the reduction of the stress hormone cortisol (7).

In the case of anxiety disorders, relaxation is a central component of yoga practice. Clients lack confidence, courage and stability, so that autogenic training, progressive muscle relaxation and deep relaxation can be beneficial.

In the presence of eating disorders, yoga can make an important contribution to increasing body satisfaction, awareness and receptivity as well as reducing self-objectivity and psychological symptoms (8). Prevention programs with concentration on yoga appear promising, as body satisfaction and social self-concept have been increased and bulimic symptoms reduced.

Conclusion: The integration into the health system for prevention and complementary therapy seems to be reasonable and as Mind Body Therapy, integrated into the treatment concept, positive effects on mental health can be achieved. In addition to body awareness, yoga concentrates on personal awareness and self-love and has an effect on the emotional, mental, cognitive and physical body levels. The yoga classes can be specifically adapted to the needs of the participants and can be set up in a disorder-specific way.

Advantages of yoga as a complementary therapy:
– Lower costs
– At the same time positive effect on the body
– No side effects
– Preventive and therapeutic support
– Less time required
– New contacts

What do you need to consider?
1. Choice of Yoga-Studio (atmosphere, costs, course offers)
2. Yoga teacher (e.g. education of teacher, authentic)
3. Yoga style (discover your preference, adapt to your daily state, examples follow)

– Vinyasa = flowing asanas, activating, breath and asanas in harmony
– Hatha = origin, breathing exercises, meditation, gentle asanas
– Ashtanga = powerful, always constant flowing sequences, condition
– Yin = relaxing, longer lasting asanas, calm, passive
– Acro Yoga = combination of acrobatics and yoga
– Kundalini = spiritual, mantras singing, meditation, energies

REFERENCES

  1. Klatte, R., Pabst, S., Beelmann, A. & Rosendahl, J. S. (2016). The efficacy of body-oriented yoga in mental disorders. Deutsches Arzteblatt international, 113 (20), 359. https://doi.org/10.3238/arztebl.2016.0195.
  2. Cramer, H., Ward, L., Steel, A., Lauche, R., Dobos, G. & Zhang, Y. (2016). Prevalence, Patterns, and Predictors of Yoga Use: Results of a U.S. Nationally Representative Survey. American journal of preventive medicine, 50 (2), 230–235.
  3. Jaquemart, P. & Elkefi, S. (1995). Yoga als Therapie. Lehrbuch für die Arzt und Naturheilpraxis. Augsburg: Weltbild Verlag.
  4. Cabral P, Meyer HB, Ames D. (2011). Effectiveness of yoga therapy as a complementary treatment for major psychiatric disorders: A meta-analysis. Prim Care Companion CNS Disord. 2011;13:pii: PCC10r01068.
  5. Ponte, S. B., Lino, C., Tavares, B., Amaral, B., Bettencourt, A. L., Nunes, T. et al. (2019). Yoga in primary health care. A quasi-experimental study to access the effects on quality of life and psychological distress. Complementary therapies in clinical practice, 34, 1–7. https://doi.org/10.1016/j.ctcp.2018.10.012
  6. Snaith, N., Schultz, T., Proeve, M. & Rasmussen, P. (2018). Mindfulness, self-compassion, anxiety and depression measures in South Australian yoga participants: implications for designing a yoga intervention. Complementary therapies in clinical practice, 32, 92–99. https://doi.org/10.1016/j.ctcp.2018.05.009
  7. Bershadsky, S., Trumpfheller, L., Kimble, H. B., Pipaloff, D. & Yim, I. S. (2014). The effect of prenatal Hatha yoga on affect, cortisol and depressive symptoms. Complementary therapies in clinical practice, 20 (2), 106–113. https://doi.org/10.1016/j.ctcp.2014.01.002
  8. Neumark-Sztainer, D. (2014). Yoga and eating disorders: is there a place for yoga in the prevention and treatment of eating disorders and disordered eating behaviours? Advances in eating disorders (Abingdon, England ), 2 (2), 136 145. https://doi.org/10.1080/21662630.2013.862369

 

Please share and like us:
error

Food is not only essential for our bodily functions, but also for our brain functioning and associated behavioural performance. Some studies have shown that eating more of a certain nutritional compound can enhance your performance. But is it really that simple? Can food supplements support our performance? While performing studies on the micronutrient tyrosine, I found out that it is not that simple, and I will tell you why.

Your food contains a range of nutrients that your body uses amongst others as energy sources and as building blocks for cells. For example, protein-rich food such as dairy, grains and seeds are made up of compounds called amino acids. Amino acids are used for different purposes in your body. Muscles use amino acids from your diet to grow. Some people take advantage of this process to increase muscle growth by eating extra protein in combination with exercise.

But amino acids also have a very important role for brain functioning; specific amino acids such as tryptophan, phenylalanine and tyrosine are precursors for neurotransmitters. Specifically tyrosine is a precursor for the neurotransmitter dopamine, which is crucially involved in cognitive processes such as short-term memory, briefly memorizing a phone number or grocery list. Ingested tyrosine from a bowl of yoghurt or a supplement is digested in your intestines, taken up into the bloodstream and then passes through the barrier between the blood stream and the brain (the blood-brain-barrier). In neurons in the brain, tyrosine is further processed and converted into dopamine. Here, dopamine influences the strength and pattern of neuronal activity and hereby contributes to cognitive performance such as short-term memory.

Short-term memory functions optimally most of the time, but can also be challenged. For example during stressful events like an exam or when faced with many tasks on a busy day, many people experience trouble remembering items. Another example is advancing age; elderly people often experience a decrease in their short-term memory capacity. These decrements in short-term memory have been shown to be caused by suboptimal levels of brain dopamine.

The intriguing idea arises to preserve or restore optimal levels of dopamine in the brain with a pharmacological tweak, or even better, using a freely available nutritional compound. Could it be that simple? Yes and no. Yes, if you eat high amounts of tyrosine, there will be more dopamine precursors going to your brain. But the effects on short-term memory vary between individuals and experiments.

Various experiments have been conducted using tyrosine supplementation to see if cognitive performance can be preserved, with mixed success.

In groups of military personnel, negative effects of stress or sleep deprivation on short-term memory were successfully countered. Subjects were asked to take an ice-cold water bath, known to induce stress, and to perform a short-term memory task [1]. In other experiments subjects remained awake during the night or performed challenging tasks on a computer in a noisy room, mimicking a cockpit [2,3].

The group that took tyrosine before or during these stressful interventions showed less decline in their short-term memory than the group that ingested a placebo compound. Tyrosine supplementation also benefitted performance on a cognitive challenge without a physical stressor, compared with performing a simpler task. Other experiments, without a physical or cognitive stressor didn’t show any differences in performance compared with a control group.

These results show that tyrosine supplementation can benefit performance on cognitive processes, such as short-term memory, but only during challenging or stressful situations that induce a shortage of brain dopamine (for review see 4,5).

However, results have also been shown to vary with age. Experiments in elderly people showed that tyrosine also influences the most challenging task compared with simple processes, but contrary to observations in younger adults, in many older adults tyrosine decreased rather than improved performance [6,7]! It seems that the effects seen in young(er) adults no longer hold in healthy aging adults. This can be due to changes in the dopamine system in the brain with aging, as well as changes in other bodily functions, such as the processing of protein and insulin. This doesn’t mean that tyrosine supplementation should be avoided all together for older adults. The results so far suggest that dosages should be adjusted downwards for the elderly body. Further testing is needed to conclude on the potential of tyrosine to support short-term memory in the elderly.

We can conclude that nutrients affect behavior, but importantly, these effects vary between individuals. So, unfortunately, one size does not fit all. To assure benefits from nutrient supplementation or diet rather than wasteful use or unintended effects, dosages should be carefully checked and circumstances of use should be considered.

REFERENCES
O’Brien, C., Mahoney, C., Tharion, W. J., Sils, I. V., & Castellani, J. W. (2007). Dietary tyrosine benefits cognitive and psychomotor performance during body cooling. Physiology and Behavior, 90(2–3), 301–307

Magill, R., Waters, W., Bray, G., Volaufova, J., Smith, S., Lieberman, H. R., … Ryan, D. (2003). Effects of tyrosine, phentermine, caffeine D-amphetamine, and placebo on cognitive and motor performance deficits during sleep deprivation. Nutritional Neuroscience, 6(4), 237–246.

Deijen, J. B., & Orlebeke, J. F. (1994). Effect of tyrosine on cognitive function and blood pressure under stress. Brain Research Bulletin, 33(3), 319–323.

van de Rest, O., van der Zwaluw, N. L., & de Groot, L. C. P. G. M. (2013). Literature review on the role of dietary protein and amino acids in cognitive functioning and cognitive decline. Amino Acids, 45(5), 1035–1045.

Jongkees, B. J., Hommel, B., Kuhn, S., & Colzato, L. S. (2015). Effect of tyrosine supplementation on clinical and healthy populations under stress or cognitive demands-A review. Journal of Psychiatric Research, 70, 50–57.

Bloemendaal, M., Froböse, M. I., Wegman, J., Zandbelt, B. B., van de Rest, O., Cools, R., & Aarts, E. (2018). Neuro-cognitive effects of acute tyrosine administration on reactive and proactive response inhibition in healthy older adults. ENeuro, 5(2).

van de Rest, O.& Bloemendaal, M., De Heus, R., & Aarts, E. (2017). Dose-dependent effects of oral tyrosine administration on plasma tyrosine levels and cognition in aging. Nutrients, 9(12).

Please share and like us:
error

A hot topic these days, that one can hear more and more information about is the microbiota-gut-brain axis, the bidirectional interaction between the intestinal microbiota and the central nervous system nowadays, this has become a hot topic. We are becoming increasingly aware that gut microbiota play a significant role in modulating brain functions, behavior and brain development. Pre- and probiotics can influence the microbiota composition, so the question arises, can we have an impact on our mental health by controlling nutrition and using probiotics?

Burokas and colleagues aimed to investigate this possibility in their study (2017), where the goal was to test whether chronic prebiotic treatment in mice modifies behavior across domains relevant to anxiety, depression, cognition, stress response, and social behavior.

In the first part of the study, the researchers fed mice with prebiotics for 10 weeks. They were administered the prebiotics fructo-oligosaccharides (FOS), galacto-oligosaccharides (GOS), a combination of both, or water. FOS and GOS are soluble fibers that are associated with the stimulation of beneficial bacteria such as bifidobacterium and lactobacillus.

Behavioral testing started from the third week including

  • the open field test (anxiety – amount of exploratory behavior in a new place),
  • novel object test (memory and learning – exploration time of a novel object in a familiar context), and
  • forced swimming test (depression-like behavior – amount of activity in the cylinder filled water).

Meanwhile, plasma corticosterone, gut microbiota composition, and cecal short-chain fatty acids were measured. Taken together, the authors found that the prebiotic FOS+GOS treatment exhibited both antidepressant and anxiolytic (anti-anxiety) effects. However, there were no major effects observed on cognition, nociception (response to pain stimulus), and sociability; with the exception of blunted aggressive behavior and more prosocial approaches.

In the second part, FOS+GOS or water-treated mice were exposed to chronic psychosocial stress. Behavior, immune, and microbiota parameters were assessed. Under stress, the microbiota composition of water-treated mice changed (decreased concentration of bifidobacterium and lactobacillus), which effect was reversed by treatment with prebiotics.

Furthermore, it was found that three weeks of chronic social stress significantly reduced social interaction, and increased stress indicators (basal corticosterone levels and stress-induced hyperthermia), whereas prebiotic administration protected from these effects.

After stimulation with a T-cell activator lectin (concanavalin A), the stressed, water-treated mice group presented increased levels of inflammatory cytokines (interleukin 6, tumor necrosis factor alpha), whereas in animals with prebiotics had these at normal levels.

Overall, these results suggest a beneficial role of prebiotic treatment in mice for stress-related behaviors and supporting the theory that modifying the intestinal microbiota via prebiotics represents a promising potential for supplement therapy in psychiatric disorders.

Watch YouTube Video:
https://youtu.be/E479yto8pyk

REFERENCES
Burokas, A., Arboleya, S., Moloney, R. D., Peterson, V. L., Murphy, K., Clarke, G., Stanton, C., Dinan, T. G., & Cryan, J. F. (2017). Targeting the Microbiota-Gut-Brain Axis: Prebiotics Have Anxiolytic and Antidepressant-like Effects and Reverse the Impact of Chronic Stress in Mice. Biological Psychiatry, 82(7), 472–487. https://doi.org/10.1016/j.biopsych.2016.12.031

Please share and like us:
error


Welcome to New Brain Nutrition. You can enjoy FREE Online Courses when you Log In or Join here.

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 728018

New Brain Nutrition is a project and brand of Eat2BeNice, a consortium of 18 European University Hospitals throughout the continent.

Partners:
You may log in here to our Intranet website with your authorized user name and password.